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Abstract

Though many real life auctions are run independently of each other, from the bidders’ point of view they
often form sequences of auctions. We investigate how behavior responds to the additional incentives that are
present in such auction sequences. Comparing subjects’ decisions in single first-price procurement auctions
with their decisions in a game consisting of two subsequent first-price procurement auctions, we find that, in
line with the theoretical prediction, entry and bidding behavior is crucially affected by the opportunity cost
of early bid submission. Though, entry decisions and average bids in the auction sequence systematically
deviate from the perfect Bayesian equilibrium prediction. While the nature of the opponent (human being
or computer) has no significant effect on these findings, giving subjects additional feedback on winners and
prices seems to reduce the deviations from the equilibrium prediction.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Originating in Coppinger et al. (1980) and Cox et al. (1982) there is extensive experimental
research on subjects’ behavior in independent private value auctions (for an overview, see Kagel,
1995). While this research provides fundamental insights into the allocation of objects in a single
auction environment, it abstracts away from the fact that auctions, which are run independently
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of each other, might form a sequence of auctions from the bidders’ point of view. This feature is
particularly relevant if bidders are constrained in their demand, since in this case bidders have to
consider their opportunity cost of early bid submission. That demand constraints might influence
entry and bidding behavior in consecutive auctions is demonstrated in recent empirical studies
on procurement auctions. In this context, demand constraints correspond to supply constraints
that might result from a limited production capacity. For example, in two studies on procurement
auctions run by the California Department of Transportation between 1994 and 2000, Jofre-Bonet
and Pesendorfer (2000, 2003) found that firms that did not win a highway paving contract earlier
in a sequence of auctions were more likely to enter a subsequent auction than firms that already
won contracts. In a similar study on auctions held by the Oklahoma Department of Transportation
between 1998 and 2000, De Silva et al. (2002) reported that firms that lost in morning auctions
bid more aggressively in the afternoon than those that won in the morning. This evidence suggests
that firms are aware of their opportunity costs of early bid submission and respond accordingly.
However, bidding patterns in reality might be influenced by a variety of factors other than the
opportunity cost of bidding created by employed capacity. Therefore, it is not clear to what extent
this opportunity cost is the driving factor of the reported results.

In this paper we use laboratory experiments to investigate the impact of opportunity costs
on entry and bidding behavior in an auction sequence. Motivated by the empirical research, we
particularly focus on a sequence of two first-price sealed-bid procurement auctions with stochas-
tically equivalent projects in which bidders were faced with a capacity constraint. Since there
exists no study that experimentally investigates bidding behavior in single first-price sealed-bid
procurement auctions that would allow us to compare subjects’ decisions in both environments,
we additionally employ this investigation in our experiment.

For our analyses of behavior in an auction sequence, we considered four treatments vary-
ing the nature of the opponent (human or computerized) and the information feedback (no
feedback or feedback). The computerized opponent treatment was implemented to find out
how subjects respond to the richer auction environment excluding additional features that
might be triggered by the human component like uncertainty about the opponents’ bidding
strategy and other-regarding concerns. Since learning effects might be an important deter-
minant of bidding behavior (see, e.g., Isaac and Walker, 1985; Selten and Buchta, 1999;
Güth et al., 2003), we analyzed how feedback on winners and prices changes subjects’ behavior.

The next section presents the single procurement auction game and the sequential procurement
auction game that were used in our experiment as well as the theoretical predictions. Section 3
describes our experimental design. The results on entry decisions and bidding behavior are pro-
vided in Section 4. Section 5 briefly concludes.

2. Games and theoretical predictions

2.1. The single procurement auction game

The single procurement auction game considered here is the competitive bidding analog to
the standard symmetric independent private values auction model without reserve price (for sur-
veys of the SIPV model, see McAfee and McMillan, 1987; Krishna, 2002; Wolfstetter, 1995; on
competitive bidding with private costs, see Holt, 1980, and Cohen and Loeb, 1990). In our con-
text, there are two bidders competing for a single project contract that is allocated by a first-price
sealed-bid auction. Each bidder specifies a price at which he is willing to execute the project.
The one submitting the lowest bid is assigned execution of the project in exchange for a payment
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Fig. 1. Equilibrium bidding in the single procurement auction game.

that equals his bid. Before bid submission, bidders are informed about their own project com-
pletion cost, that their competitor’s completion cost is randomly and independently drawn from
a uniform distribution with support [20, 100], and that bids exceeding 100 are not accepted (the
maximum bid might be interpreted as the procurers outside option). For this game, the symmetric
risk-neutral Nash equilibrium bidding function depending on cost realization c is given by

βsingle(c) = 50 + c/2.

Figure 1 depicts the equilibrium bidding function. Obviously, the bidder with the lowest cost
level, say cl , submits the lowest bid and receives the profit βsingle(cl) − cl from winning and
completing the project. The losing bidder makes a zero-profit.

2.2. The sequential procurement auction game

The sequential procurement auction game used in our experiment augments the single auction
game by a second single auction game where another independent project contract is offered after
the outcome of the first one is observed. There are two bidders in this auction sequence, each with
capacity to undertake a single project at most. The first auction auctions off project A. The second
auction auctions off project B . In each of the two auctions, bidders can submit a bid at which
they are willing to execute the project. The bidder submitting the lowest bid is assigned execution
of the project in exchange for a payment equal to her bid. Before the two bidders have to decide
simultaneously whether to enter the first auction and to submit a bid for project A, they are
informed about their individual pair of completion costs for the projects A and B . Bidders know
that nobody will receive any information about their competitor’s exact costs for the two projects.
They are only informed that the competitor’s project costs are randomly and independently drawn
from a uniform distribution with support [20, 100] and that bids exceeding 100 are not accepted.

Although this game is highly stylized, it captures basic incentives that are present in auc-
tion sequences. The next three subsections present the theoretical predictions for bids and entry
decisions in the sequential auction game.

Theoretical prediction for bidders’ participation in auction A
Let (a, b) ∈ [20,100]2 denote the representative bidder’s cost pair where the first (second)

entry refers to his cost of completing the first (second) project auctioned off (for a more general
model, see Reiß and Schöndube, 2002; for a related model with second-price auctions and a
non-procurement frame, see Gale and Hausch, 1994). If a < b then the bidder is said to have
a cost advantage for project A and if a > b she has one for project B . The opportunity cost of
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winning the first auction equals 100 − b since losing it implies (due to the competitor’s capacity
constraint) that the bidder is the only one in the second auction. For a bidder with a cost advantage
for project B , it follows that his opportunity cost of winning auction A strictly exceeds his largest
possible profit realization from winning A since 100 −b > 100 −a. Hence, any bidder that faces
a higher cost for project A prefers to lose the first auction provided that he submits a bid in
this auction. In case the bidder does, he clearly bids the largest amount that is accepted by the
procurer. This minimizes her chance of ending up with project A and maximizes her profit if
so. However, a bidder with a cost advantage for project B might decide to skip bidding in the
first auction if his opportunity cost of starting to bid in this auction exceeds his benefit. As an
extreme, consider a bidder with a = 100 and b < 100. Clearly he cannot make any positive profit
in the first procurement auction and only earns a positive expected profit if he bids in the second
auction. Since there is a positive probability that he may end up with project A even if he bids
100 in the first auction and is thus prevented from making money, he decides to skip bidding for
the first project. In contrast, bidders with a cost advantage for project A always participate in the
first auction since, in auction A, they can earn more than the largest possible payoff obtainable
in auction B , 100 − b, by submitting a bid, βA, that fully includes both the completion cost for
project A and its opportunity cost from winning this project, i.e. βA > a + 100 − b. In general,
if both bidders are risk-neutral, a bidder submits a bid for the first project if

E
[
ΠA+B(a, b)

]
� E

[
ΠB(b)

]
(1)

where E[ΠA+B(a, b)] denotes her expected equilibrium profit if bidding for the first and possi-
bly for the second project and E[ΠB(b)] is her expected equilibrium profit if she skips bidding
for project A. In general, E[ΠA+B(a, b)] is decreasing in the completion cost for project A, a,
and E[ΠB(b)] is independent of a. If (1) holds with equality, the bidder is indifferent between
entering and skipping auction A and the entry indifference curve acrit = g(b) is implicitly defined
by

E
[
ΠA+B(acrit, b)

] = E
[
ΠB(b)

]
.

In the symmetric perfect Bayesian equilibrium of this game, the entry decision rule is

ε(a, b) =
{

Enter auction A if a � g(b),

Skip auction A if a > g(b),

where the entry indifference curve g(b) is approximately given by

g(b) = 100 + 8.938
[
e

b−100
48.332 − e

100−b
48.332

]
.

The equilibrium entry behavior of any bidder with cost pair (a, b) is illustrated in Fig. 2.
For any b ∈ [20,100], the entry indifference curve g(b) lies above the 45-degree line where

the completion costs for both projects coincide. Intuitively, a bidder with a � b who enters the
first auction can secure himself a profit 100 − b with certainty. If, instead, this bidder skips
the first auction, he may have to compete with the other bidder in the second auction leading
to a winning bid less than 100. As a result, entry indifference only occurs if a bidder has a
cost advantage for the second project. Moreover, the entry indifference curve g(b) is strictly
monotonic increasing in b. To see this, note that as b increases the expected equilibrium profit
that results from entering the first auction, E[ΠA+B(a, b)], falls less sharply than the expected
equilibrium profit that results from skipping this auction, E[ΠB(b)]. That is, as b increases entry
indifference requires a relatively lower profit resulting from entering the first auction which is
accomplished by an increase in the completion cost for the first project, a.
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Fig. 2. Equilibrium entry behavior.

Fig. 3. Equilibrium bidding function for project A.

Equilibrium bidding for project A

Let λ denote the total cost of completing project A that includes both, the actual cost of
executing project A and its opportunity cost created by employed capacity, i.e.

λ = a + 100 − b, λ ∈ [20,180].
Using total completion cost for project A, the equilibrium bidding function may be written as

βA(λ) =
{100 if λ > 100 ⇔ a > b,

2
3

λ3−30λ2−1,660,000
λ2−40λ−12,400

otherwise.

Since ∂βA/∂b < 0 for a < b, bids for project A decrease in b and the equilibrium bid-
ding function shifts downwards as the opportunity cost of winning project A falls. Hence,
βA(λ, b = 100) = βA(λ = a) is the lower bound of equilibrium bidding functions. As Fig. 3
illustrates, it does not coincide with the standard bidding function in a single procurement auc-
tion, βsingle(a) = 50 + a/2, since the bidder’s competitor does not always participate in the first
auction and submits higher bids than in the standard case if he participated. As a result, the low-
est equilibrium bidding function βA(λ, b = 100) lies above the bidding function in the standard
procurement auction model.
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Fig. 4. Equilibrium bidding function for project B with competition.

Equilibrium bidding for project B

If a bidder has already won project A which is known before bid submission for project B ,
there is only a single bidder in auction B who obviously bids the largest feasible amount. Thus,
bidding competition in the second auction implies that both bidders skipped the first one. The
equilibrium bidding function is given by

βA(b) =
{

100 if she is the only bidder,

b + 0.5839(b−100)+14.11[e(100−b)/48.332−e(b−100)/48.332]
0.292[e(100−b)/48.332+e(b−100)/48.332]−0.5839

otherwise.

The difference to a standard procurement auction lies in the fact that both bidders have the ad-
ditional information that neither of them has a pair of completion costs that leads him to bid for
project A. Inspection of Fig. 2 illustrates that types with low completion costs for project B more
often skip auction A than types with large costs. It follows that a competitor’s completion cost for
project B conditional on the fact that he skipped the first auction is not uniformly distributed but
rather characterized by a probability density function that decreases in b. Therefore, equilibrium
bidding for project B is more aggressive than in the standard model as depicted in Fig. 4.

3. Experimental design

In our study, we used a 2 × 2 matrix design with the treatment variables information feedback
(no feedback, feedback) and nature of the opponent (human, computerized). In all four treat-
ments, subjects first participated in a single auction part, which was the same for all treatments,
and then they played a sequential auction part. The within subject design allowed us to compare
the subjects’ decisions in single auction games with their entry and bidding behavior in sequen-
tial auction games. In order to test whether the employment of a single auction part influenced
the subjects’ behavior in the sequential auction part, we additionally run a treatment, in which
subjects only participated in the sequential auction part.

In the single auction part, each subject played 14 single auction games against a computerized
bidder. Subjects were informed that the computerized bidder was programmed to maximize his
expected payoff, to be risk-neutral, and to act on the assumption that the opponent behaves in
the same way as he does. It was known that nobody will receive any feedback on the opponents’
behavior either in the course of or after the completion of the single auction part.

In the sequential auction part, subjects played 28 sequential auction games, each of the sort
described in the last section. The two feedback treatments only differed with respect to the
on-screen information displayed after each sequential auction game. While in the feedback treat-
ment, subjects were informed about winners and prices, in the no feedback treatment subjects
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Table 1
Experimental treatments

Opponent Feedback Single auctions Other characteristics Treatment label # of subjects

Computerized No feedback no CnF_seq 24
yes CnF 12

modified instructions CnF_mi 12
other cost pair series CnF_os 12

Feedback yes CF 12
Human No feedback yes HnF 12 (+12)a

Feedback yes HF 24 (+24)a

a The number in brackets indicates the number of subjects faced with a different series of completion cost pairs in the
sequential auction part. All data are available from the authors upon request.

received no such information. In the human opponent treatment, subjects played the 28 sequen-
tial auctions with different opponents. These opponents were randomly selected from a group
of five participants with the restriction that subjects could not be matched with the same partner
in two consecutive games. In the computerized opponent treatment, subjects received the same
information about the computerized bidder’s behavior as in the single auction part. In order to
be more precise about the consequences of this behavior in the sequential auction game, in all
treatments, subjects were informed that if the opponent maximizes his expected payoff, is risk-
neutral and acts on the assumption that his opponent behaves in the same way as he does, he
would skip the first auction with a probability of 25 percent. Since the latter might influence
subjects’ behavior we ran an additional computerized opponent treatment without this informa-
tion.

Before the first session, we independently drew two series of completion costs for the 14
single auction games and the 28 sequential auction games from a uniform distribution ranging
from 20 to 100 (as was explained in the instructions).1 One series was assigned to subjects and
the other series was assigned to their computerized and human opponents. To facilitate statistical
analyses and to make the data straightforwardly comparable across treatments, the same series
of completion costs were used in all sessions and treatments except for one.2

The experiments were run with a total of 144 students at the Magdeburg Laboratory for Ex-
perimental Economics (MaXLab) using Fischbacher’s (1999) z-tree software tool. No subject
participated in more than one experiment. Average payoffs were about €15.39, with a minimum
of €9.83 and a maximum of €18.88. No experiment lasted longer than 90 minutes. Table 1
summarizes the treatments and sample sizes.

4. Results

The next subsections present our results on subjects’ behavior in the single auction part and in
the sequential auction part. The investigation of the sequential auction part particularly focused
on subjects’ entry decisions and their bidding behavior in the sequential auction game.

1 All instructions are included in Appendix A.
2 To test a hypothesis regarding subjects’ behavior it was necessary to run a session with a different series of cost pairs

(see Section 4.2).
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Fig. 5. Average bids in the single auction part.

4.1. Single auction part

In the single auction part, we observed that out of a total of 1680 observed bids, 71.3 percent
were below the RNNE-prediction.3 In order to test if there is a tendency for underbidding in the
data, we adopted the null hypothesis that underbidding is as likely as overbidding where the 13
observations of RNNE-bidding were counted as overbidding favoring the null. Using one-tailed
Binomial tests with data pooled over treatments, we could reject the null at significance levels
below 1.2 percent for every game confirming underbidding as the dominant pattern.4 This finding
also emerged when applying one-tailed t tests: In 13 of the 14 first-price auctions subjects’
average bids significantly fell short off the risk-neutral Nash-equilibrium prediction βsingle(·)
(p < 0.026). Since in our procurement auction context it is the lowest bid that wins the auction
(and not the highest bid as in the standard auction context), underbidding in single procurement
auctions nicely translates to the overbidding phenomenon observed in standard first-price auction
experiments (see Kagel, 1995). Figure 5 shows the average bids submitted by subjects in the
single auction part sorted by the subjects’ completion cost in the 14 auction games.

4.2. Sequential auction part

Effect of playing the single auction part
A comparison of behavior in the CnF treatment without a preceding single auction part and the

CnF treatment with a preceding single auction part (CnF_seq) revealed no significant differences

3 In Appendix B, Table B.2 provides more detailed bidding data.
4 Note that a pairwise comparison of subjects’ average bids between our six treatments revealed no significant dif-

ferences (p > 0.335, exact two-tailed Mann–Whitney U test). We obtained similar results when comparing subjects’
average bids for each auction game separately. Only three of the 210 comparisons were (weakly) significant (p = 0.034
for one comparison and 0.060 < p < 0.077 for two comparisons, exact two-tailed Mann–Whitney U test).
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either with regard to the average number of correct entries (p = 0.848, exact two-tailed Mann–
Whitney U test) or with regard to the subjects’ average bids for project A (for each of the 28
auction games: p > 0.050, exact two-tailed Mann–Whitney U test) or with regard to the subjects’
average bids for project B (for each of the 28 auction games: p > 0.050, exact two-tailed Mann–
Whitney U test). These results suggest that our observations in the 28 sequential auction games
are not affected by the implementation of a preceding single auction part.

Entry decisions
The analysis of subjects’ 28 entry decisions revealed that, in all treatments, more than 70

percent of these decisions were “correct” in the sense that they were in line with the equilibrium
prediction of the sequential auction model, see Table 2.

In particular, the frequency of correct entries per subject as a share of the total number of all
sequential auction games (28) significantly exceeded 57 percent (which is the expected relative
frequency of correct entries under the entry rule “enter always auction A” since equilibrium entry
behavior predicts subjects to enter auction A in 16 out of 28 auction games), but was significantly
lower than 100 percent (in all treatments: p < 0.005, one-tailed t test).5,6 This result implies that
the observed share of correct entry decisions also significantly exceeded the expected relative
frequency of correct entries generated by any arbitrary random entry rule where the chances of
entry and non-entry are given by q and (1 − q), since “enter always auction A” (i.e., q = 1) is
the most successful rule in this class of entry rules.7 Another class of decision rules that might
have been applied by our subjects is characterized by “enter if a < μ” where μ is some exoge-
nous threshold.8 These rules ignore the level of completion cost for project B and would lead
subjects to enter the first auction as long as their completion cost for project A is smaller than the
threshold μ. The best random entry rule for the series of realized completion cost pairs (“enter

Table 2
Frequencies of correct entries

Sample statistics of the relative frequency
of correct entries per subject (%)

CnF CF HnF HF Pool

Mean 70.8 84.2 72.6 81.6 78.2
Median 69.6 82.1 75.0 83.9 78.6
Minimum 46.4 71.4 50.0 35.7 35.7
Maximum 96.4 100 92.9 96.4 100
Std. Dev. 14.7 9.6 12.7 13.5 13.7

5 Binomial tests reject the hypotheses that the share of correct entries observed in any of the treatments is lower than
or equal to 60% or that it is larger than or equal to 90% at significance levels below 0.0007.

6 Note that if subjects interpreted the information that “if the opponent maximizes his expected payoff, is risk-neutral
and acts on the assumption that his opponent behaves in the same way as he does, he would skip the first auction with
a probability of 25 percent” in a way that lead them to skip the first auction in 25 percent of our 28 sequential auction
games, their average frequency of correct entry decisions should be 53.6 percent. This was not the case, however. In
addition, we tested whether giving this information had any effect on entry decisions revealing that in 27 out of 28
auction games there was no significant effect (CnF vs. CnF_mi: p > 0.213, 1 game: p = 0.037, two-tailed Fisher test).
Similar results are obtained for bidding behavior for projects A and B .

7 To see this, note that the expected relative frequency of correct entries for any of these random entry rules
over our 28 sequential auction games is: E[correct entry share for random entry] = q · Pr.[entry is correct] + (1 − q) ·
Pr.[non-entry is correct] = (3 + q)/7, where the probability of a correct entry is 16/28.

8 We are grateful to a referee for suggesting this class of decision rules.
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Table 3
Share of observed entry decisions that coincide with predictions of a particular entry rule

Entry rule Share of explained
entry decisions

(1) enter always auction A 60.89 percent
(2) enter auction A if a < 70 71.96 percent
(3) enter if a < g(b) (theory) 78.16 percent

always auction A”) is a special case of this class with μ = 100 resulting in a correct entry share
of 57.1 percent as discussed. A decrease of threshold μ = 100 leads to an increase in the result-
ing share of correct entries. The largest correct entry share that this class of rules can achieve
is 85.7 percent with any μ ∈ (64.84,85.23). In the two no feedback treatments (CnF, HnF), the
observed correct entry share was significantly lower than 85.7 percent (p < 0.005, two-tailed t

test), and in the two feedback treatments (CF, HF), it did not significantly differ from 85.7 percent
(p > 0.1316, two-tailed t test).9 However, this class of rules is inconsistent with the observed en-
try behavior since probit estimations that relate the observed entry decisions to the completion
costs for the two projects yield a significantly positive coefficient on completion cost b that is
disregarded by this rule (for all treatments, p < 0.001). This effect biases downward the share
of explained entry predictions as compared to the explanatory power of the theoretical bench-
mark. For each of the best simple entry rules and theory, Table 3 briefly summarizes the share
of observed entry decisions that are in line with the entry prediction under the corresponding
rule.10

Looking at the average frequency of correct entry decisions per sequential auction game as a
share of the total number of entry decisions in a given auction game (see Fig. 6) we observed that
this frequency strongly varied over the 28 auctions. In some auction games, the relative frequency
of correct entries is particularly low, e.g. 45 percent in game 14, in others it is close to 100 percent
such as in games 18 and 19 where it equals 98.3 percent. Since auction games differ only in
project cost pairs, it is natural to relate the frequency of correct entries in a given auction game
to the associated project cost pair. Figure 7 displays pooled entry data on all 28 auction games
in the project cost space where treatment-specific figures are similar. Every marking corresponds
to a single cost pair and its size indicates the observed average frequency of correct entries in
that game basing on 60 individual entry decisions. Marking sizes come in the four categories
85–100 percent, 70–85 percent, 55–70 percent, and 40–55 percent and classify the observed
average frequency of correct entries. E.g. the cost pair (a, b) in game 28 was (45.27, 40.57) and
its marking size indicates that 70–85 percent of all entry decisions in this game were in line with
the theoretical prediction (in game 28 the precise number was 81.3 percent.)

From Fig. 7 it is evident that the share of correct entries increases as the cost pair’s vertical
distance to the entry indifference curve g(b), i.e. |a −g(b)|, increases. Since both entry decisions
(enter A/skip A) for cost pairs that lie on g(b) lead to the same expected equilibrium profit by
definition, the opportunity cost of an incorrect entry decision increases in the cost pair’s distance
to the entry indifference curve. Thus, Fig. 7 suggests that the variation of correct entry decisions
across auction games might be explained by the subjects’ expected cost of an incorrect entry

9 This result indicates that giving feedback on winners and prices increased the share of correct entries, see our more
detailed discussion below.
10 Treatment-specific figures are similar.
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Fig. 6. Relative frequency of correct entries per auction game.

Fig. 7. Relative frequencies of correct entries in cost space.

decision. In particular, we hypothesize that the higher the subjects’ expected cost of an incorrect
entry is, the more subjects are aware of this cost and, consequently, the higher is their average
frequency of correct entry decisions. Analyzing this hypothesis yields a significantly positive
correlation between the subjects’ expected cost of an incorrect entry and the average frequency of
correct entry decisions in all four treatments (Spearman’s ρ > 0.6213, p < 0.001, see Fig. 8).11

Further investigations of treatment effects demonstrated that feedback information seems to
increase the frequency of correct entries as illustrated by Fig. 9. This is not only true for the

11 The reported analyses do not include the subjects faced with a different completion cost pair series in the human
opponent treatments. Including these subjects does not change the results, however.



J. Brosig, J.P. Reiß / Games and Economic Behavior 58 (2007) 50–74 61
Fig. 8. Relative frequency of correct entries per game and expected cost of incorrect entry.
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Fig. 8. (continued)

Fig. 9. Empirical distributions of subjects’ (relative) correct entry frequencies.

human opponent treatment, but also true for the computerized opponent treatment (p < 0.054,
exact two-tailed Mann–Whitney U test).

Interestingly, subjects’ entry behavior was not significantly influenced by the nature of the
opponent (p > 0.678, exact two-tailed Mann–Whitney U test). This finding is in line with pre-
vious results in a standard first-price auction experiment conducted by Walker et al. (1987). Our
finding suggests that subjects’ behavior in the sequential auction game is neither driven by some
kind of other-regarding concerns (see, e.g., Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000;
Charness and Rabin, 2002; Dufwenberg and Kirchsteiger, 2004) nor by strategic uncertainty.
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Bidding for project A

As predicted by the sequential auction model, average bids for project A are considerably
higher than those observed in the single auction games (see Fig. 10) suggesting that subjects
responded to the opportunity cost of early bid submission.

This impression is further confirmed by comparing average bids for project A to the RNNE-
predictions for single auction games. From Fig. 10 and the data included in Table 4 it is evident
that there is an extreme pattern of overbidding in the first stages of the 28 sequential auction
games relative to βsingle. Applying one-tailed t tests per round and per treatment, in 91 of the 105
total comparisons we found that subjects submitted significantly higher bids than predicted by
βsingle(c) (p < 0.025).12

Another test for the impact of the subjects’ opportunity costs on their observed bidding be-
havior is to compare the distribution of bids when subjects were faced with a cost advantage for
project B to the distribution of bids when they were faced with a cost advantage for project A.
Whenever there is a cost advantage for project B , theory predicts a bid equal to the maximum
amount 100 and it predicts a bid less than 100, if there is a cost advantage for project A.13 Fig-
ure 11 provides the observed bid distributions by treatment. It is evident that the bid distribution

Fig. 10. Bidding data for project A vs. bidding data from single auction games.

12 Binomial tests by treatments and by rounds with at least five observations allow to reject the hypothesis that observed
bids are as likely below as above βsingle(c) in 63 of 86 comparisons at the 5% level.
13 We are grateful to a referee for suggesting this test.
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Table 4
Bidding in auction A in comparison to the single auction bidding prediction

Treatment #Underbids
(A-bids vs. βsingle)

#Overbids
(A-bids vs. βsingle)

Total

CF 8 (4.8%) 203 (95.2%) 211
CnF 32 (15.8%) 1702 (84.2%) 202
HF 41 (9.8%) 3771 (90.2%) 418
HnF 44 (22.9%) 1484 (77.1%) 192
Pool 125 (12.2%) 8985 (87.8%) 1023

Fig. 11. Empirical distributions of subjects’ bids for project A conditional on qualitative cost advantages and treatments.

conditional on a > b first-order stochastically dominates the distribution conditional on a < b

in each treatment. Although, the theoretical benchmark for bids with a > b predicts that all ob-
servations cluster at 100, we observed minor deviations: For the treatment pool, 77.9 percent of
observed bids under a > b were exactly equal to 100 and further 12.6 percent of observed bids
fell into the interval [99,100) suggesting that opportunity costs were broadly understood.14

Moreover, the theoretical prediction that a higher cost for project B leads to more aggressive
bidding for project A is also supported by subjects’ bidding behavior, see Fig. 12.

However, Fig. 10 illustrates that subjects’ average bids per round and per treatment were
somewhat lower than theoretically predicted by the sequential auction model. Similar to bidding

14 If we further restrict our observations to satisfy g(b) > a > b, i.e. the cost pairs that underlie the observed bids belong
to the “middle region” in Fig. 2, then for the treatment pool, 74.2 percent of observed bids were exactly equal to 100 and
13.4 percent of observed bids fell into the interval [99,100).
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Fig. 12. Bidding data for project A given cost for project B .

behavior in single auction games, these observations translate to the overbidding phenomenon
observed in standard first-price auction experiments. Though, in only 22 of the 105 total com-
parisons15 these differences were significant at the 5-percent level (two-tailed t test). That is, in
over 70 percent of all cases behavior was fairly in line with the theoretical prediction βA(a, b).

Testing for treatment effects, we observed in only 2 out of 102 comparisons between the four
treatments significant differences at the 5-percent level (exact two-tailed Mann–Whitney U test;
see Fig. 13). Neither the feedback on winners and prices nor the nature of the opponent seem to
have a strong effect on subjects’ bids for project A. The latter result confirms our supposition that
other-regarding concerns or strategic uncertainty are not the driving factors for subjects’ behavior
in the sequential auction game.

Bidding for project B

Our analysis of subjects’ bidding behavior in the second auction is restricted to the case of
two bidders competing for project B .16 Looking at Fig. 14 reveals that the subjects’ average bids
do not depend on the completion cost for project A as predicted by the sequential auction model.
This is also formally verified by regressing individual bids for project B under competition on

15 The total number of observations resulted from the number of treatments, 4, multiplied by the number of auctions,
28, minus the number of auctions without entries or with only one entry, 7. Given that in 48 games (over all treatments)
subjects are predicted to skip the first auction, the number of games in which we observe no or only one entry might
appear very low. Note, however, that out of the 720 entry decisions that could be made in these 48 games 505 were
correct in the sense that subjects chose to “skip the first auction”.
16 If there is no bidding competition, subjects are predicted to bid 100, which is the largest accepted bid. In the exper-
iment, subjects were informed that their bids were automatically set to 100, if they were the only bidder in the second
auction.
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Fig. 13. Bidding data for project A by treatment.

Fig. 14. Bidding data for project B vs. bidding data from single auction games.
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completion costs a and b (for a: p > 0.373, for b: p < 0.002; detailed results are provided in
Appendix B, Table B.1).

However, average bids per round and per treatment were higher than predicted. In 36 out of
88 comparisons these differences were significant at the 5-percent level (two-tailed t test). That
is, in more than 40 percent of all cases actual average bids significantly deviated from those pre-
dicted by theory. In contrast, testing whether there was a significant difference between actual
average bids and theoretically predicted bids for single auction games, we found that in 83 of the
88 total comparisons the differences were not significant at the 5-percent level (two-tailed t test).
These observations suggest that subjects’ bids for project B are more in line with the theoretical
prediction for single auction games than with the theoretical prediction of the sequential auction
model. Possibly, this effect is attributable to subjects’ ignorance of the endogenous bidder se-
lection effect. According to this effect, bidders are predicted to update their beliefs according to
Bayes rule and, consequently, to bid more aggressively for project B than in the single auction
game, since bidders with a lower cost for project B are more likely to skip the first auction and
subjects’ bids only refer to the case of two bidders.

Since subjects appear to act as if they do not update their beliefs about their competitor’s cost
for project B , it is a priori not obvious if our results on entry, that depend on Bayesian updating
through the theoretical entry prediction, continue to hold once the behavioral assumption of non-
updating is accounted for by the solution of our auction model.17 If equilibrium predictions are
modified as a consequence of the assumption that bidding behavior for project B under compe-
tition coincides with that in a single auction game, the resulting entry indifference curve rotates

Fig. 15. Bidding data for project B by treatment.

17 Notice that predicted bidding behavior in the first auction does not depend on the entry indifference curve.
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in the point (100, 100) somewhat downward. Given that this new entry indifference curve leads
to identical entry predictions as the original equilibrium entry indifference curve for our series of
cost pairs, we conducted an additional treatment with an alternative cost pair series (CnF_os) that
allows to differentiate between the two types of entry predictions. The data obtained in this treat-
ment reveal that the original entry indifference curve is in line with 78.6 percent of the subjects’
entry decisions while the new entry indifference curve is in line with 72.9 percent of subjects’
entries. The difference between the relative frequencies of ‘correct’ entries per subject is not sig-
nificant (p = 0.228, two-tailed exact Wilcoxon test for matched pairs), however. It appears that
subjects’ entry behavior is consistent with both entry indifference curves to the same extent.

Comparing the four treatments for each auction game separately revealed in only 3 of the
76 total comparisons differences that were significant on the 5-percent level (exact two-tailed
Mann–Whitney U test). That is, similar to our observations for subjects’ behavior in auction A,
their average bids for project B were not strongly influenced by feedback on winners and prices
and by the nature of the opponent.

5. Conclusions

This paper experimentally investigated behavior in first-price sealed-bid procurement auc-
tions. The results on the 14 single auction games demonstrated that subjects’ bids were sig-
nificantly lower than those predicted by theory. Since underbidding in first-price procurement
auctions corresponds to overbidding in standard first-price auctions, this observation suggests
that the deviation pattern is quite robust with regard to the auction frame.

Analyzing the 28 sequential auction games revealed that, in line with the theoretical predic-
tion, both, subjects’ auction entries and their bidding behavior for project A, were significantly
influenced by the opportunity cost of early bid submission. Though, similar to our findings in the
single auction games, subjects’ bids for project A were somewhat lower than those predicted by
the sequential auction model.

Our result that bidding behavior for project B is more in line with the theoretical prediction
for the single auction games than with the sequential auction model indicates that subjects, who
are informed that their competitor did not submit a bid for project A, do not update their beliefs
accordingly, i.e. they do not consider that skipping is a payoff maximizing behavioral pattern
only for those subjects whose completion cost for project B is relatively low.

The reported findings for the sequential auction games were similar across all treatments. The
investigations of treatment effects demonstrated that the nature of the opponent had no signif-
icant effect on behavior, whereas giving subjects feedback on winners and prices significantly
reduced the deviations from the theoretical prediction for entry decisions. Given our findings on
the sequential auction games, opportunity costs seem to be a crucial determinant of real-life entry
and bidding behavior in auctions and have to be taken into account when investigating auction
mechanisms. Further research is required to find out how robust these results are when there are
more than two bidders who compete for project contracts.
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Appendix A. Instructions (Translation from German)

Preliminary Remark

You are participating in an experimental analysis of individual decision-making. During the experiment, you and the
other subjects are asked to make decisions. In doing so, you can earn money. The exact amount of money will depend on
your decisions. At the end of the experiment, your total earnings will be converted into Euros at the rate 90 LD : 1 EURO
and will be paid off in cash together with a show-up fee of 3 EURO.

The experiment lasts approximately 90 minutes and consists of two different parts. At the beginning of each part, you
will receive a detailed set of instructions. All subjects in the experiment will receive an identical set of instructions and
briefings. Please notice that neither your decisions in the first part of the experiment nor your decisions in the second part
of the experiment will affect the respective other part of the experiment.

None of the participants will receive information about the identity of the other participants in the course of the
experiment.

Part 1

Please read this set of instructions. About five minutes after you’ve received these instructions we will come to you
for answering open questions. If you have questions during the experiment, please raise your hand. We will come to you.

During the first part of the experiment, you will participate in 14 auction rounds.
Description of the auction rounds
In each of the 14 auction rounds, one project is auctioned off. The winning bidder is the one who submits the lowest

bid. In each auction round, there are precisely two bidders, you and another bidder.
Information: For both bidders, we have independently drawn the cost of completing the project from the interval 20

LD to 100 LD for each auction round. Each of the two bidders will be informed only about his own completion cost.
The only available information on the cost of the other bidder is that it is randomly and independently drawn from the
above-mentioned interval, whereby each amount within this range is selected with equal probability.

Course: At the beginning of each auction round, each of the two bidders can decide on the bid, he wants to submit
for the project.

• If your bid for project A is lower than the bid of the other bidder, then you win the auction and your profit in this
round is the difference between your bid and your completion cost for that project.

• If your bid for project A is higher than the bid of the other bidder, then you lose the auction and your profit in this
round is equal to zero.

• If your bid for project A is equal to the bid of the other bidder, then you win the auction with 50 percent probability.

The other bidder: In each of the 14 auction rounds, the other bidder is a computer. The computer is programmed
to maximize its expected payoff in each auction round. More specifically, it bids according to the (symmetric) Nash-
equilibrium strategy under risk-neutrality. In doing so, it acts on the assumption that you behave in the same way as the
computer does. It expects that your completion cost is randomly and independently drawn from the interval 20 LD to
100 LD, whereby each amount within this range is selected with equal probability.

Payment: Upon completion of the 14 auction rounds, the sum of your profits per auction round will be converted into
Euros at the rate 90 LD : 1 EURO. This amount will be paid off at the end of the entire experiment.

Notice that none of the bidders will receive information about his profits in the course of the first part of the experi-
ment.

In the course of the entire experiment, none of the participants will receive information about any other subject’s
bidding behavior and profits in part 1 of the experiment.
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Part 2

Please read this set of instructions. About five minutes after you’ve received this instructions we will come to you for
answering open questions. If you have questions during the experiment, please raise your hand. We will come to you.

During the second part of the experiment, you will participate in 28 auction rounds.
Description of the auction rounds
In each of the 28 auction rounds you participate in, two projects will be auctioned off one after the other. In the first

stage of each round, project A will be auctioned off and in the second stage of each round, project B will be auctioned
off. In each stage, the bidder who submits the lowest bid wins the auction.

In each auction round, there are precisely two bidders, you and another bidder. Each of the two bidders can win one
project at most in each auction round.

Information: For both bidders, we have independently drawn the completion cost for both projects from the interval
20 LD to 100 LD for each auction round. Each of the two bidders will be informed only about his own completion costs.
The only available information on the costs of the other bidder is that it is randomly and independently drawn from the
above-mentioned interval, whereby each amount within this range is selected with equal probability.

This implies that with a probability of almost 50 percent the other bidder’s completion cost of project A is smaller
than his completion cost for project B and that with a probability of almost 50 percent the completion cost of project B

is smaller than the completion cost for project A (with a residual probability smaller than 0.1 percent the other bidder
has the same completion cost for both projects).

[This sentence was only included in the feedback treatments CF and HF: Upon completion of each auction round,
you will be informed about the winner in each auction and about the prices resulting from the two auctions]

Course: At the beginning of each auction round, each of the two bidders can decide whether he submits a bid in the
first auction (project A) of this auction round.

If you submit a bid in the first auction (project A), then there are two possibilities:

(a) The other bidder submits a bid for project A, too.
• If your bid for project A is lower than the bid of the other bidder, then you win project A and your profit for this

auction round is the difference between your bid and your completion cost for project A.
• If your bid is higher than the bid of the other bidder, then you lose the first auction and you will be the only

remaining bidder in the second auction (project B). In that case, your bid in the second auction will automatically
be set to 100 LD (this is equal to the largest possible amount of completion cost for project B). Your profit for
the auction round is then the difference between 100 LD and your completion cost for project B .

• If your bid is equal to the bid of the other bidder, then you win the first auction with 50 percent probability.
(b) The other bidder does not submit a bid for project A.

You win the first auction and your profit for the auction round is the difference between your bid and your completion
cost for project A.

If you do not submit a bid in the first auction (project A), again, there are two possibilities:

(c) The other bidder submits a bid for project A.
• The other bidder wins the first auction and you are the only remaining bidder in the second auction (project B).

Your bid in the second auction will automatically be set to 100 LD (this is equal to the largest possible amount of
completion cost for project B). Your profit in the auction round is then the difference between 100 LD and your
completion cost for project B .

(d) The other bidder does not submit a bid for project A, too. That is, in this case both bidders will submit a bid in the
second auction (project B).
• If your bid for project B is lower than the bid of the other bidder, then you win the second auction and your profit

in this auction round is the difference between your bid and your completion cost for project B .
• If your bid is higher than the bid of the other bidder, then you lose the second auction. In this case, your profit in

this auction round is zero.
• If your bid for project B is equal to the bid of the other bidder, then you win the second auction with 50 percent

probability.

[In the computerized bidder treatments, CF and CnF, the following paragraph was included:
The other bidder:
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In each of the 28 auction rounds, the other bidder is a computer. The computer is programmed to maximize its
expected payoff in each auction round. More specifically, it bids according to the (symmetric) Nash-equilibrium strategy
under risk-neutrality. In doing so, the computer acts on the assumption that you behave in the same way as it does. The
computer expects that your completion costs are randomly and independently drawn from the interval 20 LD to 100 LD,
whereby each amount within this range is selected with equal probability.

This information implies that the computer does not submit a bid in the first auction with the probability of almost 25
percent.] [The last sentence was eliminated in treatment CnF_mi.]

[In the human bidder treatments, HF and HnF, the following paragraph was included:
The other bidder: In the second part of the experiment, you and five other participants form a group of bidders. In

each of the 28 auction rounds, you are randomly assigned a bidder from your group of bidders. It is ensured that you will
not be assigned to the same bidder in two consecutive rounds.

If the respective other bidder in each auction round maximizes his expected payoff, i.e. he bids according to the
(symmetric) Nash-equilibrium strategy under risk-neutrality, and acts on the assumption that you behave in the same
way as he does, and expects that your completion costs are randomly and independently drawn from the interval 20 LD
to 100 LD, whereby each amount within this range is selected with equal probability, then the other bidder does not
submit a bid in the first auction with the probability of almost 25%.]

Payment: Upon completion of the 28 auction rounds, the sum of your profits per auction round will be converted
into Euros at the rate 90 LD : 1 EURO and paid off to you in cash together with your profit from the first part of the
experiment and the show-up fee.

Notice that, in the course of the second part of the experiment, none of the bidders will receive information about
[These words were only included in the no feedback treatments CnF and HnF: his profits and] the bidding behavior and
profits of the other bidders.

Appendix B

Table B.1
Estimation of bids for project B under competition (Note that the estimation procedure takes into account that bids of any
given subject may be correlated, that there may be dependencies within matching groups, and that observations between
matching groups are independent, see Rogers, 1993); non-robust OLS-estimated standard errors for the same models
lead to the same conclusion, for all treatments: p > 0.279).

Treatment Expl. variable Coefficient Robust SE t P > |t |
constant 57.33279 10.01783 5.72 0.000

CnF a −0.0371006 0.0918525 −0.40 0.694

b 0.4587084 0.0929365 4.94 0.000

constant 65.89897 9.358437 7.04 0.000

CF a −0.0953477 0.1137251 −0.84 0.420

b 0.4048851 0.0913286 4.43 0.001

constant 48.41588 7.123198 6.80 0.000

HnF a −0.0598807 0.064294 −0.93 0.374

b 0.588068 0.0560378 10.49 0.000

constant 54.58808 4.46719 12.22 0.000

HF a 0.0075551 0.0355698 0.21 0.838

b 0.4372036 0.0471857 9.27 0.000

constant 55.32419 4.052724 13.65 0.000

Pool a −0.0236282 0.037447 −0.63 0.531

b 0.4620281 0.0323729 14.27 0.000
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10 11 12 13 14 Pool

77.99 20.13 53.48 60.12 32.01 –
89.00 60.07 76.74 80.06 66.01 –
5 7 9 8 7 110
7 5 3 4 5 58
89.08 63.17 72.61 77.08 66.58 73.17
90.50 60.00 73.24 79.00 65.00 74.45
7.35 11.19 10.43 8.94 12.59 13.76

9 10 12 10 11 140
3 2 0 2 1 28
87.89 54.44 70.27 77.54 60.43 70.17
85.99 59.00 71.74 79.56 61.01 70.00
6.29 11.81 5.55 6.54 5.64 15.52

28 32 37 34 35 470
17 16 10 14 13 191
87.63 58.52 71.46 77.31 64.79 71.43
85.66 57.45 70.00 75.00 60.00 70.00
6.51 16.48 11.05 10.66 14.53 17.07

15 15 17 16 15 226
8 9 7 8 9 108
87.54 59.06 71.64 78.36 62.72 71.80
86.50 60.00 70.00 79.00 63.02 70.42
6.84 16.24 12.76 11.39 13.85 17.40
Table B.2
Analysis of bidding data for the single procurement auction game

Treatment\Round 1 2 3 4 5 6 7 8 9

Project cost 80.14 20.30 45.27 70.18 25.08 33.41 85.23 58.06 40.57
RNNE-prediction 90.07 60.15 72.64 85.09 62.54 66.71 92.62 79.03 70.29
CF #Underbids 11 9 9 9 5 8 7 8 8
(n = 12) #Overbids 1 3 3 3 7 4 5 4 4

Average bid 87.72 57.97 64.20 81.73 66.37 62.70 91.78 75.46 67.96
Median bid 87.50 58.88 62.34 79.00 65.50 65.00 90.00 75.50 65.00
Std. dev. 3.52 9.25 9.83 7.43 11.06 8.72 4.85 10.17 9.56

CnF #Underbids 10 10 11 8 10 10 8 10 11
(n = 12) #Overbids 2 2 1 4 2 2 4 2 1

Average bid 89.17 51.65 64.00 82.97 55.71 60.39 91.55 72.29 64.32
Median bid 89.50 59.00 65.14 84.50 59.00 61.00 92.08 70.78 65.50
Std. dev. 5.49 14.83 7.32 7.78 11.27 12.13 3.02 5.79 8.06

HF #Underbids 37 36 34 28 32 36 30 35 36
(n = 48) #Overbids 11 12 13 19 15 11 17 12 11

Average bid 89.09 56.60 64.49 83.34 59.81 60.27 92.10 73.40 64.24
Median bid 89.54 57.50 60.00 81.18 59.50 60.00 90.00 70.00 60.00
Std. dev. 5.73 18.11 12.67 8.59 17.25 13.42 4.54 10.19 11.84

HnF #Underbids 18 18 19 15 15 17 16 14 16
(n = 24) #Overbids 6 6 5 9 8 7 8 10 8

Average bid 87.98 50.94 65.29 84.27 60.96 61.64 92.15 76.17 66.44
Median bid 87.50 49.65 60.00 84.00 59.99 60.00 90.00 71.78 63.64
Std. dev. 5.25 18.65 11.93 9.08 16.62 14.45 4.76 12.05 12.44
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10 11 12 13 14 Pool

8 8 10 9 7 117
4 4 2 3 5 51
87.75 58.93 72.42 79.33 67.42 72.93
86.50 87.00 70.00 80.00 65.00 70.07
4.71 10.06 9.27 8.22 15.22 14.57

8 9 8 10 9 135
4 3 4 2 3 33
86.66 58.80 72.25 75.32 60.42 70.52
88.00 58.94 72.26 78.00 59.01 70.00
5.03 13.54 9.86 9.71 13.04 15.39

73 81 93 87 84 1198
43 39 26 33 36 469
87.67 58.76 71.67 77.52 62.74 71.61
87.00 59.00 70.00 78.00 60.00 70.00
6.25 14.59 10.48 9.86 13.43 16.33
Table B.2 (continued)

Treatment\Round 1 2 3 4 5 6 7 8 9

CnF_mi #Underbids 9 6 9 9 8 9 9 9 7
(n = 12) #Overbids 3 6 3 3 4 3 3 3 5

Average bid 89.73 60.03 68.44 82.68 58.92 62.03 91.02 73.09 69.30
Median bid 90.00 60.15 67.00 80.00 59.50 60.00 90.00 70.00 67.50
Std. dev. 4.53 14.94 9.31 6.59 12.65 11.56 3.04 7.82 10.73

CnF_os #Underbids 8 10 10 11 11 11 9 11 10
(n = 12) #Overbids 4 2 2 1 1 1 3 1 2

Average bid 90.84 53.17 66.20 81.50 55.64 59.34 91.34 71.95 63.92
Median bid 90.00 50.00 63.75 80.00 54.11 59.50 90.00 70.00 30.00
Std. dev. 4.45 13.82 10.81 5.57 13.86 12.27 2.43 7.71 10.55

Pool #Underbids 93 89 92 80 81 91 79 87 88
(n = 120) #Overbids 27 31 27 39 37 28 40 32 31

Average bid 88.98 55.11 65.14 83.08 59.78 60.88 91.84 73.87 65.54
Median bid 89.53 56.05 60.00 80.45 59.99 60.00 90.00 70.00 61.64
Std. dev. 5.17 16.51 11.19 7.96 15.32 12.63 4.14 9.74 11.13
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