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Abstract

We present results from a series of experiments that allow us to measure overbidding
and, in particular, underbidding in first-price auctions. We investigate how the amount
of underbidding depends on seemingly innocent parameters of the experimental setup.

To structure our data we present and test a theory that introduces constant mark-
down bidders into a population of fully rational bidders. While a fraction of bidders in
the experiment can be well described by Bayesian Nash equilibrium bids, a larger frac-
tion seems to either use constant markdown bids or seems to rationally optimise against
a population with fully rational and boundedly rational markdown bidders.

Keywords: Experiments, Auction, Bounded rationality, Overbidding, Underbidding,
Markdown bidding

(JEL C92, D44)

1 Introduction

In this paper we study one feature of bidding behaviour in first-price auction experiments with
private values that was paid little attention to for a long time: underbidding for low valuations.
One reason for taking insufficient notice of this feature might be that underbidding is difficult
to observe with standard experimental setups, another reason might be that underbidding is
hard to reconcile with several established theories.

In this paper we present a method that allows to observe overbidding and underbidding in
first-price auctions. We find that the amount of underbidding depends on seemingly innocent
parameters of the experimental setup. To organise the data we introduce (boundedly rational)
constant markdown bidders into a population of fully rational bidders. In our analysis we
consider a heterogeneous population of rational bidders and (boundedly rational) markdown
bidders.

To set the stage for our paper, let us review a seminal series of first-price auction exper-
iments presented by Cox et al. (1983, 1985, 1988). Figure 1 shows bidding data from one of
their experiments. Participants repeatedly play a first-price auction with a fixed number of
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Figure 1 An example from an experiment by Cox et al. (1988)
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(page 83, figure 8, series 4, exp. 3, n=4, subject 2)

bidders. For each participant valuations are drawn from a uniform distribution. The figure
depicts normalised1 bidding data for a specific subject.

The solid line indicates the risk neutral Bayesian Nash equilibrium (RNBNE) bidding
function. As commonly found, most bids exceed the risk neutral equilibrium bidding function.
This is what we refer to as overbidding and what was replicated in many first-price auction
experiments.

Interestingly, closer examination of the bidding data in figure 1 reveals that for low val-
uations many bids are below, not above, the equilibrium bid. This characteristic of bidding
data is not pathological: Cox et al. (1988) find in some cases negative intercepts when approx-
imating bids by linear bidding functions in some cases; further, Ivanova-Stenzel and Sonsino
(2004) report that 7.4% of the bids in their first-price auction experiments are below the lowest
possible valuation. If bidders attach any utility to money, these bids cannot be part of an
equilibrium.

Despite these findings, underbidding does not receive much attention in the experimental
literature. One reason might be that underbidding is often ruled out implicitly or explicitly
through the design of the experiment. Choosing zero as the smallest possible valuation looks
like an innocent simplification. In this paper we will show that this simplification implies
strong behavioral effects. Another reason might be that bids for small valuations are not easy
to observe precisely. In this paper we will use a variant of the strategy method that makes it
easier to observe these bids.

In this paper we present a simple theory of heterogenous bidders, differing in the degree
of rationality, that is supported by our data. Previous literature demonstrates heterogeneity
in subjects’ behavior in many experimental settings, including auction experiments. Thus,
approximating bidding behavior by a single bidding function with a fixed functional form
that describes all bids reasonably well might be too demanding. Instead, we propose three
different types of bidders which can be linked to different degrees of rationality. We know from
experiments with other games that decision makers apply different levels of reasoning when
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choosing a strategy in a game (see Bosch-Domenech et al., 2002). In the context of first-price
auctions we should mention Crawford and Iriberri (2007) who analyse bidding under different
degrees of rationality. In our paper we suggest a specific starting point for such a sequence
of different levels of rationality: absolute markdown bids. For a population-mix model in the
double auction, see Saran (2011).

Section 2.1 reviews the model of an extreme case: a rational bidder who assumes that
the opponent is rational, too. In section 2.2 we study the opposite extreme: a bidder who
is restricted to use absolute markdown bids and assumes that the opponent obeys to the
same restriction. The idea of boundedly rational bidders is not new. Kagel et al. (1987) have
used a more flexible form of markdown bids in the context of affiliated private value auctions
and found some explanatory power. In contrast, we introduce an equilibrium foundation
for absolute markdown bids that also accommodates heterogeneous bidding behaviour with
perfectly rational bidders along with boundedly rational markdown bidders. Chen and Plott
(1998) also compare several variants of markdown bids with Bayesian Nash equilibrium bids
when bidders exhibit constant relative risk aversion (CRRA). They find that CRRA provides a
more accurate model than their variants of markdown bids. We do not deny such a possibility.
If all bidders must fit a single type of bidding function, then CRRA might be a good choice. In
our experiment we want to examine whether some bidders systematically do something else.
As a natural next step, we will consider a bidder who is rational but assumes to meet a mix
of rational and restricted opponents in section 2.3.

Section 3 then describes the experiment and section 4 presents the results. Section 5
concludes. Anticipating our result we will be able to classify bidders into these three groups
that we outlined above. If the experimental setup rules out underbidding then these groups
are indistinguishable. Bids can be well explained by established theories, e.g. CRRA. Once
underbidding is possible in the experiment, some decision makers continue to bid in line with
CRRA, but the majority of decision makers follow a quite different bidding pattern.

2 The theoretical framework

In this section, we derive optimal bidding functions for three different contexts that differ in
the population’s composition of rational and boundedly rational bidders. We concentrate on
a first-price sealed-bid auction with private valuations and two bidders. First, we report the
well-known Bayesian Nash equilibrium with rational bidders where the rationality of bidders
is common knowledge. Second, we introduce boundedly rational bidders that we refer to as
markdown bidders. We derive the optimal bid function for the situation where the bounded
rationality of bidders is common knowledge. Third, we derive the optimal bid function of
rational bidders where it is common knowledge that there are boundedly rational bidders
alongside rational bidders in the underlying population of bidders.

2.1 Bayesian Nash Equilibrium bids

Deriving the Bayesian Nash Equilibrium for the first-price sealed-bid auction is standard and
is repeated here to introduce the notation. Consider the case where valuations are distributed
uniformly over [0, 1] and bidders have constant relative risk aversion (CRRA), i.e., utility is
given by u(x) = xr where r is a parameter of risk tolerance. A risk neutral individual is
described by r = 1, a risk averse individual has r < 1. We confine our attention to the case of
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r ∈ (0, 1]. Let us assume that bidders use a symmetric increasing bidding function γ(x) with
inverse γ−1(·). In equilibrium all bidders bid according to γ. Bidder 1 has valuation x and bids
b. Hence, bidder 1 wins the auction if the valuation of bidder 2 is smaller than z = γ−1(b) which
occurs with probability G(z) ≡ z. Bidder 1 chooses z to maximise EU = G(z) · u(x − γ(z))
which yields the following first-order condition:

(x− γ(z))r − r · z · (x− γ(z))r−1γ′(z) = 0 (1)

In the symmetric equilibrium we have z = x:

(x− γ(x))r−1 · (γ(x) + x · (rγ′(x)− 1)) = 0 (2)

It is easy to see that in equilibrium γ(0) = 0 which yields the unique solution

γ∗(x) =
x

1 + r
. (3)

The second derivative ∂2EU/∂z2 = −(rx/(1 + r))r−1 is negative, so we have indeed found a
maximum. If valuations are drawn from the interval [ω, ω] instead of [0, 1], one finds similarly
that the equilibrium bid is

γ∗(x)− ω =
x− ω

1 + r
. (4)

As is well-known, the more risk averse a bidder is (the smaller the value of r), the larger is
γ∗. Further, for finitely risk-averse bidders γ∗(x) < x, so that bidders “shade their bids” by a
fraction of x− ω that depends on risk tolerance r.

2.2 Equilibrium with markdown bids

In the Bayesian Nash equilibrium of the first-price auction bidders ‘shade their bids’ propor-
tional to x − ω. However, in a post-experimental questionnaire of another first-price auction
experiment2 some participants explained that they shade their bids not by a relative but, in-
stead, by a constant amount. More broadly, shading by a constant amount may have various
reasons:

• It may be cognitively too difficult to work out the exact form of equation (4) or to
intuitively behave in full accordance with it. However, participants quickly understand
that the bid must be somewhat lower than the valuation to have the opportunity of
gaining a positive payoff, hence they may resort to finding a suitable constant by trial
and error.

• Shading by a constant amount could be due to satisficing behaviour. A bidder who wants
to gain a pre-determined amount if winning the auction must bid the own valuation
minus this amount.

• Shading by a constant amount can also be interpreted as a simple rule given to a bidding
agent. If first a principal has to define a bidding rule (before the individual valuation
is revealed) and then the agent who follows this rule learns the valuation, then it might
be simpler for the principal to require a fixed amount that the agent is supposed to gain
from each trade.

2Kirchkamp et al. (2009).
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To formalise this type of bidding behaviour, we utilise a notion of behavioural bidding that
assumes behavioural player i to subtract a fixed amount from the valuation as follows:

γ̄i(x) = x− αi (5)

where the parameter of autonomous bid shading, αi ≥ 0, is individual-specific. To capture that
real-life participants in auctions do not arbitrarily select the size of autonomous bid shading, we
move beyond a purely behavioural approach with αi given by a draw from some distribution.
Instead, we endogenise αi by assuming that bidders are boundedly rational and maximise their
expected utility by choosing the parameter of constant bid shading independently.

In the following we derive the Bayesian Nash equilibrium of the auction game where both
bidders engage into behavioural bidding as described before but choose their amounts of au-
tonomous bid shading αi simultaneously before learning their valuations. After learning the
valuation, they bid according to the implied bidding rule. The assumption that bidders cannot
update their bidding rules in response to learning their valuation is essential for autonomous
bid shading. If bidder i could change the bidding rule by selecting a different αi after ob-
serving valuation xi, then the Bayesian Nash equilibrium with rational bidders as reported
in section 2.1 emerges since then αi is conditioned on the valuation xi such that it replicates
equation (3). As a result the equilibrium value of α with autonomous bid shading is optimal in
expectation, although it is not the best response after learning the realisation of a particular
valuation.

Figure 2 Space of bidders’ values
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Bidder i wins the auction with the higher bid, γi > γj, for all bidders’ values (xi, xj) ∈ [0, 1]2

such that bid shading implies xi−αi ≥ xj−αj. For any αj , bidder i finds it optimal to respond
with an amount of bid shading α∗

i such that α∗

i ∈ [αi, αj + 1] where αi = max{0, αj − 1}.
With bid shading beyond αj + 1 there is no realisation of values (xi, xj) that allows bidder i
to win the auction, hence any choice of αi > αj + 1 is strictly dominated by, e.g., αi = αj.
Similarly, any amount of bid shading smaller than αj − 1 allows bidder i to win the auction
for any realisation of values so that shading bids by αi = αj−1 strictly dominates any smaller
amount of bid shading.

Figure 2 indicates the set of bidders’ values that lead bidder i to win the auction with
autonomous bid shading of (αi, αj) as grey-shaded regions; the left panel assumes that bidder i
shades bids less than bidder j, while the right panel assumes the opposite. Bidder i wins the
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auction if bidder j submits the smaller bid, i.e. if xj < xi + αj − αi. It follows that the
expected utility of bidder i is given by:3

EUi(αi) =

{

[1−
∫ 1+αi−αj

0

∫ 1

xi−αi+αj
f(xi) f(xj) dxj dxi] u(αi) if αi ≤ αi ≤ αj

[
∫ 1

αi−αj

∫ 1+αi−αj

0
f(xi) f(xj) dxj dxi] u(αi) if αj ≤ αi ≤ αj + 1

With u(x) = xr and uniformly distributed values, bidder i’s optimal amount of autonomous
bid shading α∗

i is given by:4

α∗

i (αj) =

{

r(αj+1)

2+r
if 0 ≤ αj ≤ r

2

(αj−1)(1+r)

2+r
+ 1

2+r

√

2r (2 + r) + (αj − 1)2 if αj ≥ r
2

(6)

The best-response function α∗

i (αj) is continuous and strictly increasing in the other bidder’s
amount of bid shading αj. Solving for the unique Bayesian Nash equilibrium yields the equi-
librium value of bid shading

α∗ =
r

2

and the equilibrium bid function follows as

γ̄∗(x) = x− r

2
. (7)

With risk neutrality, r = 1, bidders shade their bids by 1/2; for an increasing degree of risk
aversion, i.e. for decreasing r, the equilibrium amount of constant bid shading decreases.

2.3 Equilibrium with rational bidders alongside markdown bidders

In the previous two subsections we have considered the two polar cases of a homogeneous
population with either rational agents or with boundedly rational agents only. In real-life or
in an experiment the population might be heterogeneous in terms of cognitive abilities—some
players might be more rational or less cognitively limited than other players. For recent evi-
dence that heterogenous cognitive abilities and beliefs about cognitive heterogeneity of players
can influence behaviour in games see Blume and Gneezy (2010). To address the possibility
of heterogeneous levels of rationality, we assume that the underlying population of potential
bidders is composed of rational players alongside boundedly rational players.

Specifically, let ρ ∈ [0, 1) be the share of all perfectly rational bidders in the population
of potential opponents while the remaining population with share 1− ρ consists of markdown
bidders. This population composition is common knowledge among rational bidders only,
while boundedly rational markdown bidders are assumed to believe to play against another
markdown bidder with probability one. Let θj ∈ {R,R} denote the rationality type of player j
that can be either fully rational, θj = R, or boundedly rational in the sense of markdown
bidding, θj = R. Then a fully rational bidder’s prior of competing with another fully rational
bidder is ρ and that of facing a markdown bidder is 1− ρ.

Assume that there is an equilibrium such that the fully rational type bids according to
γ(x) and the boundedly rational type bids according to γ̄(x) where both equilibrium bid

3The expected utility for any αi < αj − 1 or any αi > αj + 1 is given by u(αi) or 0, respectively.
4See appendix A for the detailed derivation.
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functions are strictly increasing. The expected utility of a fully rational bidder i facing the
competitor j, who is randomly drawn from the population of bidders, is (assuming that bidder j
bids according to the proposed equilibrium) given by:

EUi = ρ · Pr{bi = max{bi, γ(xj)} | θj = R} · u(xi − bi)

+ (1− ρ) · Pr{bi = max{bi, γ̄(xj)} | θj = R} · u(xi − bi).

Since the assumed equilibrium bid function of the fully rational type is strictly increasing, there
exists the inverse χ(b) := γ−1(b) that maps a fully rational player’s bid b to the corresponding
value x. The probability that player i outbids another fully rational bidder follows as F (χ(bi)).
Let G(b) denote the cumulative distribution function of bids submitted by the boundedly
rational type so that the probability of player i outbidding this type is G(bi). By markdown
bidding as described by (7) together with the distribution of values, F (x), we have G(b) =
b+r/2 for b ∈ [−r/2, (2− r)/2]. Therefore, the maximization problem of fully rational bidder i
that competes with bid bi against an equilibrium bidder of unknown rationality type is given
by

max
bi

EUi = [ρF (χ(bi)) + (1− ρ)G(bi)] · (xi − bi)
r.

The first-order condition follows as

[ρF ′(χ(bi))χ
′(bi) + (1− ρ)G′(bi)] (xi − bi)

r − r [ρF (χ(bi)) + (1− ρ)G(bi)] (xi − bi)
r−1 = 0.

For fully rational bidder i it cannot be beneficial to deviate from the equilibrium strategy in
equilibrium, hence, xi = χ(bi). Using this property and substituting for probability densities
leads to the following differential equation whose solution (with an appropriate initial value to
be determined below) is the inverse of the equilibrium bid function of the fully rational type,
χ(b),

ρ [χ(bi)− bi]χ
′(bi) = [(1 + r)ρ− 1]χ(bi) + (1 + r)(1− ρ)bi + (1− ρ)

r2

2
(8)

In equilibrium, a rational bidder with the smallest possible value of 0 never wins against
another rational bidder but only against boundedly rational bidders. With the distribution
of bids submitted by markdown bidders, G(b), the optimal bid of rational bidder i with xi

follows as5

γ(0) = − r2

2(1 + r)

The initial condition follows as χ(−r2/(2(1 + r))) = 0. Since differential equation (8) is
non-linear and non-autonomous an explicit solution is not known in general. Figure 3 shows
the (inverted) numerical solution for different attitudes towards risk r and various population
mixes ρ.

5The maximization problem of rational bidder i with value xi = 0 is

max
bi

ρ · 0 + (1 − ρ) ·G(bi) · (0− bi)
r

where G(bi) = bi + r/2 for bi ∈ [−r/2, (2 − r)/2] and the first-order condition follows as (−b)r − r(b +
r/2)(−b)r−1 = 0 and is necessary and sufficient for a unique maximum.
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Figure 3 Equilibrium bid function of rational bidders γ(x) for risk aversion r ∈ {1, 2
3
, 1
3
} and

population mix ρ ∈ {.1, .2, . . . , .9}.
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Coloured lines show equilibrium bids in the mixed population for different values of ρ. The black line shows

the equilibum bid for a population with only rational bidders.

3 Experimental setup

The purpose of the experiment to twofold: We want to examine to what extent the existing
experimental evidence on first-price auctions is an artefact of the design and we want to find
out how far absolute markdown bids are consistent with actual behaviour.

Chen and Plott (1998) study a situation where Bayesian Nash equilibrium bids are not
linear. In this setup they do not find much evidence of markdown bids. To give markdown
bids a good chance to be observable we use here a situation where Bayesian Nash equilibrium
bids are linear and clearly distinguishable from markdown bids. Of course, our design does
not allow us to assess the capability of markdown bids to explain bidding behaviour in all
conceivable auctions. However, it allows us to establish whether markdown bids are an element
contributing to actual bidding behaviour.

Comparing equations (4) and (7) shows that absolute markdown bids differ from Bayesian
Nash equilibrium bids—in particular for low valuations: Absolute markdown bids can be
smaller than the smallest valuation while Bayesian Nash equilibrium bids cannot. We exploit
this difference to distinguish absolute markdown bids from Bayesian Nash equilibrium bids.
This has two implications for the experiment:

First, we must observe bids also for low valuations in a reliable way. To allow bidders to
gain as much experience as possible for low valuations we use a setup with two bidders only.
Furthermore, we use the strategy method and play five independent auctions in each round
which increases the chance of feedback with low valuations. The idea of this setup is similar
to that in Kirchkamp et al. (2009) and Kirchkamp and Reiß (2011).

Second, we must provide the realistic possibility for bidders to submit bids that are lower
than the lowest valuation. This might be difficult if the lower bound of valuations is equal
to zero as in many experimental studies. To this end we want to understand how seemingly
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Table 1 Treatments
Treatment [ω, ω] restriction of bids auction
−25 [−25, 25] — first-price

0 [0, 50] — first-price
0+ [0, 50] only positive bids first-price
25 [25, 75] — first-price
50 [50, 100] — first-price
50+ [50, 100] only positive bids first-price
50+II [50, 100] only positive bids second-price

innocent changes in the parameters of the experiment affect the choice between Bayesian
Nash equilibrium bids and absolute markdown bids. In our experiment we vary the range of
valuations and the restriction to submit only positive bids.

In section 2 we determined equilibrium bids and absolute markdown bids for valuations
which are distributed uniformly over an interval [0, 1]. These bids can be easily generalised to
valuations which follow a uniform distribution over any interval [ω, ω]. Table 1 lists these inter-
vals that we study in our experiments and provides treatment names. With our experimental
design, we test the following hypotheses:

Hypothesis 1 (pure Bayesian Nash equilibrium bidding) If all bidders use Bayesian
Nash equilibrium bids we should not find any significant amount of underbidding. Also if
bidders are risk averse, or if regret or spite plays a substantial role, we should not find under-
bidding.

Hypothesis 2 (partial markdown bidding) If some bidders use markdown bids or if
some bidders believe that there are absolute markdown bidders with positive probability we
should find underbidding for small and overbidding for large valuations in all treatments where
underbidding is possible (i.e. the −25, 25, 50, and 50+ treatment).

Even with markdown bids we should find no underbidding in the 0+ treatment since there it
is not possible to submit negative bids. The 0 treatment where negative bids are allowed is
an intermediate case. Some participants might be tempted to assume that bids should not be
smaller than zero, others might not.

Hypothesis 3 (suppression of markdown bidding) We should find more absolute mark-
down bids in the 0 treatment than in the 0+ treatment.

To check whether the restriction to positive bids has any confounding effects even with an
interval where the restriction should not matter we compare the 50 to the 50+ treatment
leading to hypothesis 4.

Hypothesis 4 (strong negative bids exclusion effect) We should find more absolute
markdown bids in the 50 treatment than in the 50+ treatment.

While the −25 treatment is theoretically equivalent to the 25 and 50 treatment, the −25 treat-
ment involves negative and positive valuations at the same time. This might be perceived as
more difficult and, thus, may give an additional incentive to use (simpler) absolute markdown
bids.
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Figure 4 A typical input screen in the experiment (translated into English)

Round: 1 of 12 Remaining time [sec]: 113

You receive 0 ECU if you make the smallest bid in an auction
The other bidder receives 0 ECU if he makes the smallest bid in the auction

Your valuation will be a number between -25 and 25
The valuation of the other bidder will be a number between -25 and 25.
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-25 -15 -5 5 15 25

Valuation [ECU]

Bid [ECU]

b

b

b

b

b

b Please indicate your bidding function
depending on the valuation that is still

going to be determined
For a valuation of -25 ECU I bid: -28.4

For a valuation of -15 ECU I bid: -18.74

For a valuation of -5 ECU I bid: -9.3

For a valuation of 5 ECU I bid: 1

For a valuation of 15 ECU I bid: 9.35

For a valuation of 25 ECU I bid: 17.5

Draw bids

Finish input stage

Hypothesis 5 (complexity favours markdown bidding) We should find more absolute
markdown bids in the −25 treatment than in the 25 or 50 or 50+ treatments due to increased
difficulty.

While for first-price auctions absolute markdown bids differ substantially from Bayesian Nash
equilibrium bids there is no such difference for second-price auctions. Underbidding for small
valuations can be the result of absolute markdown bids in first-price auctions, but it should
disappear (even with absolute markdown bids) in second-price auctions (treatment 50 + II).

Hypothesis 6 (no underbidding in second-price auctions) There should be no signifi-
cant amount of underbidding in the 50 + II treatment.

All experiments were conducted in the experimental laboratory of the SFB 504 in Mannheim.
In total 304 subjects participated in these experiments. A detailed list of the treatments is
given in appendix B, instructions are provided in appendix C. The experiments were comput-
erised and we used the software package z-Tree (Fischbacher (2007)).

A typical input screen used in the experiments is shown in Figure 4 (translated into En-
glish). In each round participants enter bids for six valuations which are equally spaced
between ω and ω. Bids for all other valuations are interpolated linearly. Upon determination
of bidding functions by all participants we draw five random and independent valuations for
each participant. Each of these five random draws corresponds to an auction for which the
winner is determined and the gain of each player is calculated. The sum of the gains obtained
in these five auctions determines the total gain from this round.
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Figure 5 A typical feedback screen in the experiment (translated into English)
Round: 1 of 12 Remaining time [sec]: 113

You receive 0 ECU if you make the smallest bid in an auction
The other bidder receives 0 ECU if he makes the smallest bid in the auction

Your valuation will be a number between -25 and 25
The valuation of the other bidder will be a number between -25 and 25.
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Valuation [ECU]

Bid [ECU]

b
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b

b

b

b

Your income from all auctions in this round is 10.65 ECU

Auction 1
Your randomly determined valuation is -24.46 ECU.
According to your entered bidding function you make a bid of -27.89 ECU.
You entered the smaller bid. The other bidder has made a bid of -8.24 ECU.
Your income from this auction is 0 ECU.

Auction 2
Your randomly determined valuation is -24.06 ECU.
According to your entered bidding function you make a bid of -27.5 ECU.
You entered the smaller bid. The other bidder has made a bid of -5.3 ECU.
Your income from this auction is 0 ECU.

Auction 3
Your randomly determined valuation is -19.66 ECU.
According to your entered bidding function you make a bid of -23.25 ECU.
You entered the larger bid.
Your income from this auction is 3.59 ECU.

Auction 4
Your randomly determined valuation is -14.15 ECU.
According to your entered bidding function you make a bid of -17.94 ECU.
You entered the smaller bid. The other bidder has made a bid of -12.02 ECU.
Your income from this auction is 0 ECU.

Auction 5
Your randomly determined valuation is 22.7 ECU.
According to your entered bidding function you make a bid of 15.64 ECU.
You entered the larger bid.
Your income from this auction is 7.06 ECU.

Continue with the next round

A typical feedback screen is shown in figure 5. Participants play 12 rounds. Each round
consists of a bid input stage and a feedback stage. At the end of these 12 rounds participants
complete a short questionnaire and are paid in cash according to their gains throughout in
the experiment.

The strategy method has been used before in other auction experiments by
Selten and Buchta (1999), Güth et al. (2003), Pezanis-Christou and Sadrieh (2003),
Kirchkamp et al. (2009), and Kirchkamp and Reiß (2011). From our own experience
with this method we know that bids that are observed with the strategy method are very
similar to bids observed with alternative methods.

In the context of this paper we should note that the three benchmark solutions we described
in sections 2.1, 2.2, and 2.3 can be represented as three different bidding functions which are
all (almost) straight lines in the experimental interface. It is, however, up to the participants,
whether they choose any of these three lines or any other curve.

4 Results

4.1 Convergence of bidding behaviour

Before we look at details of bidding behaviour we have to check whether behaviour stabilises
over the course of the experiment. To do this we rely on three indicators of stability. First we
count how often participants change support points of their bidding function. In each period
and for each participant this can be a number between zero and six. It is zero if the participant
continues to use the bidding function from the last period, and it is six if all bids are changed.
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Figure 6 Convergence of bids over time
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The figure shows how many of the six support points (hypothetical bids) of a bid function a median bidder
changes and the maximal absolute amount of this change.

The development of the median of this distribution is reported in the left graph of figure 6.
By definition all six support points are new in the first period, thus, period 1 must start with
6 changes for all treatments. We see that, after some adjustments during the first few periods,
participants apply a stable bidding function. During the second half of the experiment the
median bidder does not change more than one or two support points in each period.

Second, the graph in the middle panel of figure 6 shows the absolute amount of these
changes over time. For each participant and each period we determine the largest absolute
change in the six hypothetical bids from one period to the next. The median of this distribution
is shown in the graph. We see that these changes are small compared to the range of the
valuation.

Third, the right panel in the figure shows that changes are distributed fairly evenly over
valuations for most treatments. The exception is the 0+ treatment where bidders are, indeed,
restricted in their changes for small valuations.

We conclude here that bidding behaviour is stable in the second half of the experiment.

4.2 Visual inspection of aggregate bids

For a first impression of bidding behaviour, figure 7 shows the median and interquartile range6

amount of overbidding b(x) − γ∗(x) as a function of the valuation x. As above γ∗(x) is the
Bayesian Nash equilibrium bidding function with risk neutrality (r = 1) as given by equation
(4). Let us briefly inspect the individual treatments:

Second-price auction: In the second-price treatment bidders have a weakly dominant bid-
ding strategy. Many participants follow this strategy. Overbidding is zero for the 25% quantile
and for the median bid. The 75% quantile is, for all valuations, larger than 0, i.e. there are some
bidders which bid more than the weakly dominant bidding strategy. This is consistent with

6Median and quartiles are taken over all bidders and all periods (after period 6) in a given treatment.
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Figure 7 Overbidding for different treatments
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The figure shows normalised bids on the horizontal and overbidding on the vertical axis. The interquartile
range of overbidding is shown as a grey area. The median amount of overbidding is shown as a black line. The
first 6 periods from each session are discarded.

the experimental literature. Already Kagel et al. (1987) find a small amount of overbidding in
second-price auctions. Kagel and Levin (1993) confirm that only a small fraction of bidders
bid less than the equilibrium strategy while a substantial fraction bid more in second-price
auctions.

First price auction, 0+: The traditional first-price treatment prevailing in the experi-
mental literature is characterised by ω = 0 and ’+’, where the sign indicates the restriction
to positive bids. The lowest possible valuation is 0, and bids are constrained to be positive.
As we should expect we find overbidding in this treatment. Median overbidding and 75%
quantile overbidding increase with the valuation. Except for the highest valuation also the
25% quantile increases with the valuation. What we see at the right end of the 0+ graph is
a decrease in the amount of overbidding for the 25% quantile. The value of the bid is still
increasing for these players, although the slope of the bidding function is now smaller than
one. This finding is consistent with risk-aversion and confirms results from several previous
experiments, starting with Cox et al. (1982).

First price auction, all other treatments: All the other treatments allow for bids that are
smaller than the smallest possible valuation. Similar to the 0+ treatment, we find overbidding
for high valuations. In contrast to the 0+ treatment, we find underbidding for low valuations.
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Table 2 Overbidding for different treatments

b(ω)− γ∗(ω) b(ω)− γ∗(ω)
treatment n mean t P>t Pbin mean t P>t Pbin

-25 − 4 -4.653 -7.703 .0023 .0625 16.229 20.753 .0001 .0625
0 − 6 -3.453 -2.003 .0508 .0156 10.586 5.798 .0011 .0156
0 + 4 .841 2.009 .9309 1 9.397 14.154 .0004 .0625
25 − 3 -4.953 -5.574 .0154 .125 8.461 4.176 .0264 .125
50 − 4 -7.53 -4.643 .0094 .0625 6.639 2.806 .0338 .0625
50 + 14 -2.597 -1.704 .0561 .212 17.272 7.169 .0000 .0001
all firstprice 29 -4.856 -7.466 .0000 .0000 10.389 13.882 .0000 .0000
secondprice 6 3.549 3.98 .9947 .9844 27.485 36.084 .0000 .0156

The table compares overbidding for the lowest and highest valuation, ω and ω. For each treatment n is the
number of independent observations. We test whether b(ω) < γ∗(ω) (underbidding for low valuations) and
whether b(ω) > γ∗(ω) (overbidding for high valuations). Mean deviations from the risk neutral Bayesian Nash
equilibrium bid are shown together with results of a parametric t-test (P>t) and a non-parametric binomial
test (Pbin). As in many other experiments we find a significant amount of overbidding for the highest possible
valuation ω in all treatments. However, we also find underbidding for the smallest possible valuation ω in all
first-price treatments where underbidding is possible, i.e. always, except in the 0+ treatment.

4.3 Results of statistical tests of aggregate behaviour

Table 2 shows mean overbidding for the highest and lowest valuation, ω and ω. Overbidding
for high valuations is consistent with e.g. CRRA and several other theories of bidding be-
haviour in auctions that we mentioned above. Underbidding for low valuations is harder to
explain. However, underbidding for low valuations is consistent with the absolute markdown
bids presented in section 2. The table compares overbidding for the lowest and highest val-
uation, ω and ω. For each treatment n is the number of independent observations. We test
whether b(ω) < γ∗(ω) (underbidding for low valuation) and whether b(ω) > γ∗(ω) (overbid-
ding for high valuation). Mean bids are shown together with results of a parametric t-test
(P>t) and a non-parametric binomial test (Pbin). To test whether the t-test on the level of the
independent observations is appropriate we have applied a Shapiro-Wilk test on means over
the independent observations. For none of the treatments the test rejects the assumption of
normality.

Hypotheses 1 and 2: Not surprisingly, and as in many other experiments with first-price
auctions, we find a significant amount of overbidding for the highest possible valuation ω in all
treatments. More interestingly, we find underbidding for the smallest possible valuation ω in all
first-price treatments where underbidding is possible, i.e. always, except for the 0+ treatment.
We find, thus, no support for hypothesis 1 (pure Bayesian Nash equilibrium bidding), but we
can confirm hypothesis 2 (partial markdown bidding).

Hypothesis 3: To see if bidding behaviour is affected by the exclusion of negative bids, we
compare differences in bids for the smallest and the highest valuation b(ω)− b(ω) observed in
the 0 treatment to those observed in the 0+ treatment. If the possibility to submit negative
bids does not affect behaviour, observed differences in bids should equal zero. The first line
in table 3 shows the results. In the 0 treatment the difference in mean bids exceeds that in
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Table 3 Slope of bidding function b(ω)− b(ω)

groups of treatments
independent
observations

difference
in means

t P>t z P>z

(0)− (0+) 10 5.482 2.469 0.018 1.492 0.068
(50)− (50+) 12 -2.958 -1.000 0.831 -1.019 0.846

(−25)− (25, 50, 50+) 19 5.059 3.657 0.001 2.500 0.006
The figure compares average slopes of the bidding functions measured as b(ω)− b(ω). The column “difference
in means” shows the difference between the average slope in the first treatment group and the average slope
in the second treatment group. The columns t and P>t show the result of a parametric t-test, the columns z
and P>z show the result of a non-parametric Mann-Whitney test.

the 0+ treatment by 5.482 ECU. This difference is significant under a parametric test, thus,
we can confirm hypothesis 3 (suppression of markdown bidding).

Hypothesis 4: The next line of table 3 shows the difference in slopes of the bidding function
between the 50 and 50+ treatment. This difference is not significant. Furthermore, not even
the sign of the effect is the same as what we expect under a strong treatment effect of explicitly
allowing negative bids. Excluding negative bids (and mentioning this fact in the instructions
to the experiment) does not per-se trigger behavioural changes towards absolute markdown
bids, so that we cannot confirm hypothesis 4 (strong negative bids exclusion effect).

Hypothesis 5: The third line of table 3 shows the difference in slopes of the bidding function
between the −25 treatment and the 25, 50, and 50+ treatment. According to hypothesis
5 (complexity favours markdown bidding) we should expect a steeper slope of the bidding
function under the −25 treatment. This is confirmed by a parametric and a non-parametric
test.

Hypothesis 6: Here we have to go back to table 2. The last line shows the difference
between bids in the experiment and equilibrium bids. We see that this difference is positive,
not negative. Hence, we do not observe a significant amount of underbidding which supports
hypothesis 6 (no underbidding in second-price auctions).

4.4 Individual bids

The quartiles of bidding behaviour, as depicted in the left panel of figure 7, suggest hetero-
geneity among bidders. To better understand individual bidding behaviour we estimate for
each bidder a linear bidding function:

b(x) = ω − α + β · (x− ω) + u (9)

The regression specification normalises valuations and bids such that the point (ω, ω) trans-
forms to the origin (0, 0) in valuation-bid space. We normalise to facilitate the comparison of
estimated intercept α (as the markdown amount) across treatments with different valuation
domains. Estimated intercepts and slopes can be interpreted as if the valuation domain is
[0, 50] for any treatment. Again we discarded the first six periods of the experiment. Outliers
have been eliminated using Hadi’s method. The fit of the estimations of equation (9) is very
good, e.g., the median R2 is 0.9918.
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Figure 8 Individual bidding
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Each graph shows contour lines of the kernel density estimate of the distribution of individual bidding functions
(see equation 9) with the first six periods of the experiment discarded. Numbers next to the contour lines are
estimated percentiles.

Since a scatterplot of all individually estimated coefficients is rather confusing, figure 8
shows the contour lines of the estimated joint distribution of α and β. We aggregate the data
in three graphs:

Second price auction: The left panel of figure 8 shows the distribution of estimated bidding
functions for second price auctions. In the weakly dominant equilibrium we have α = 0 and
β = 1. Indeed, the distribution of estimated values is nicely centered around this value.

First price auction, 0+: The middle panel depicts coefficient estimates for the 0+ treat-
ment. The risk neutral Bayesian Nash equilibrium predicts α = 0 and β = 1/2. Risk averse
equilibrium predicts α = 0 and β > 1/2. As the figure illustrates, the distribution of coeffi-
cients is concentrated around α = 0 and its support includes values for β between 1/2 and 1.
In this treatment risk averse Bayesian Nash equilibrium and other theories that we mentioned
above explain the data quite well.

First price auction, all other treatments: The right panel of figure 8 illustrates coeffi-
cient estimates for all the other treatments. To facilitate the comparison we also indicate the
distribution estimated for the 0+ treatment as dotted lines. To further facilitate the discus-
sion, figure 9 shows the same graph with additional lines and labels. First consider the right
panel of figure 8. It is easy to see that the possibility to make bids smaller than the lower
bound of the valuation domain, ω, changes bidding behaviour substantially:

• Now a large group of bidders is characterised by β ≈ 1 and a substantial markdown
amounts α > 1. These bidders are, in line with section 2.2, much better described by
absolute markdown bids instead of following the Bayesian Nash equilibrium bidding.
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Figure 9 Categorisation of bidders
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• There is still some overlap with the distribution estimated for the 0+ treatment. This
region could characterise bidders that are not affected by our treatment conditions and
always bid according to the risk averse Bayesian Nash equilibrium (see section 2.1), or
are driven by motives like spite or regret.

• Finally, there is a group of bidders with β < 1 but still a positive markdown amount
α. In the context of section 2.3 we interpret these bidders as rational bidders who
realise that not all bidders are perfectly rational. Alternatively they might be viewed as
markdown bidders.

4.5 Categorising individual bidders

When interpreting the contour lines of figure 8 as contour lines of a mountain, the mountain
in the graph on the right has three ridges. In the left panel of figure 9 we indicate these ridges
approximately with bold lines and letters A, B, and C. These lines are merely intended to
clarify the discussion. One could certainly draw them in a slightly different manner.

Ridge A runs parallel to the distribution of bidding functions in the 0+ treatment. We
categorise bidders close to this ridge as rational bidders who believe that they are in a rational
world.

Ridge C is close to β = 1. All bidding functions on this ridge have an −α < 0. We
categorise bidders close to this ridge as bidders who use absolute markdown bids and who
expect their opponents to do the same.

Ridge B is in between (and less pronounced than A or C). As above, we interpret these
bidders as rational bidders who realise that not all bidders are perfectly rational.

We now categorise bidders into different groups. The dashed lines indicate the borders of
the regions that we use. Clearly, there is some degree of arbitrariness in choosing threshold
values for α and β. We have tried to find a region for the Bayesian Nash (A) bidders which
includes almost all of the 0+ bidders. A suitable threshold seemed to be α = 3. We have also
tried to make region (C) symmetric to β = 1. This led to a threshold of β = 0.92.

The table in the center of figure 9 shows the result of this categorisation. The graph on
the right hand side of the same figure depicts the sample shares of bidder categories B and C
for all treatments. For the 0+ treatment the shares of B and C are negligible. However, for
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the 0 treatment shares of B and C increase substantially. We attribute this to the possibility
to submit negative bids so that markdown bidding is feasible as opposed to the 0+ treatment.
While for the remaining four treatments most players are either Bs or Cs, there is still a
fraction of about 25% of Bayesian Nash players.

We are now ready to examine our hypotheses at the individual level. Again, we reject
hypothesis 1 (pure Bayesian Nash equilibrium bidding) and support hypothesis 2 (partial
markdown bidding), except for the 0+ treatment. We also find clear support for hypothesis 3
(suppression of markdown bidding), since there are more Cs in the 0 treatment than in the 0+
treatment. In line with the aggregate data, we cannot support hypothesis 4 (strong negative
bids exclusion effect); there is essentially no difference between the 50 and the 50+ treatment.
Hypothesis 5 (complexity favours markdown bidding) is supported—the largest share of Cs is
found in the −25 treatment.

5 Concluding remarks

Many first-price auction experiments find that subjects bid more than the risk neutral equi-
librium bid, they ‘overbid’. We can confirm this finding. However, the approaches that have
been used so far to explain overbidding are not in line with our second finding: underbidding
for small valuations.

The idea we are proposing here, namely that some bidders use absolute markdown bids,
is independent of the representation of payoffs as lottery tickets or as money and consistent
with the traditional experimental evidence. We have seen in section 2 that optimal absolute
markdown bids imply underbidding for small valuations and that the presence of a small
proportion of bidders with absolute markdown bids is sufficient to make rational bidders
behave as if they were constrained in a similar way.

In our experiment we find that a fraction of bidders can still be described well with tradi-
tional models, e.g. risk averse Bayesian Nash equilibrium. In many treatments this is a small
fraction. We have seen that a substantially larger fraction of bidders follows absolute mark-
down bids. A third group, finally, behaves like optimisers against such a mixed population.

We can, hence, not conclude that all bidders can be described better with absolute mark-
down bids. We also cannot say much about the importance of markdown bids in other, perhaps
more complicated contexts. We have, however, seen that in our experiment absolute mark-
down bids become more prominent when the environment becomes more complicated (as in
the −25 treatment). Hence, when we find already a fair amount of markdown bids in a very
simple auction, we might suspect that markdown bids play an even more important role in
more complex auctions.
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A Derivation of the best-response function α∗
i (αj) with

markdown bids as given by (6)

With the uniform distribution, f(xi) = f(xj) = 1 for xi, xj ∈ [0, 1], and CRRA utility, the
expected utility function simplifies to

EUi(αi) =

{

[1− 1
2
(αi − αj + 1)2]αr

i if max{0, αj − 1} ≤ αi ≤ αj ,
1
2
(αj − αi + 1)2 αr

i if αj ≤ αi ≤ αj + 1.

To ease the exposition, define auxiliary functions h−(z) and h+(z) corresponding to the two
cases of the expected utility function as follows:

h−(z) = [1− 1

2
(z − αj + 1)2] zr,

h+(z) =
1

2
(αj − z + 1)2 zr.

Case I: h−(z) is maximised on the interval [z, αj] at z∗
−
= min{z1, αj} where z1 is defined

further below. The first derivative of h−(z) is

h′

−
(z) =

r zr−1

2

[

2− (z − αj + 1)2 − 2z

r
(z − αj + 1)

]

and exhibits two non-zero roots z1, z2 6= 0 such that

z1,2 =
(1 + r) (αj − 1)

2 + r
± 1

2 + r

√

2r(2 + r) + (αj − 1)2.

It is straightforward to show that z < z1 < αj − 1 +
√
2. There exists z′ ∈ (z, z1) such

that h′

−
(z′) > 0, further, h′

−
(z1) = 0, and h′

−
(αj − 1 +

√
2) < 0. Since z2 < z, z1 is the

unique root of h′

−
(z) for z > z so that, with continuous differentiability of h−(z) for z > z

and continuity of h−(z) for z ≥ z, h−(z1) is the maximum on interval [z, αj − 1 +
√
2].

Therefore, z∗
−
= z1 is the maximiser on interval [z, αj] for z1 ≤ αj and z∗

−
= αj emerges

as the boundary solution for z1 > αj.

Case II: h+(z) is maximised on [αj, αj + 1] at z∗+ = max{z4, αj} where z4 is defined further
below. The first derivative of h+(z) is

h′

+(z) =
1

2
zr−1 (αj − z + 1) [r (αj − z + 1)− 2z]

and exhibits two non-zero roots: z3 = αj+1 and z4 = r(αj+1)/(2+r). Since h+(z3) = 0
while h+(z) > 0 for z ∈ [αj , αj + 1), z3 identifies a minimum. It is obvious that
0 < z4 < αj + 1. There exists z′ ∈ (0, z4) such that h′

+(z
′) > 0, further, h′

+(z4) = 0,
and there exists z′′ ∈ (z4, αj + 1) such that h′

+(z
′′) < 0. Since z4 is the unique root of

h′

+(z) for 0 < z < αj + 1, with continuous differentiability of h+(z) for 0 < z < αj + 1
and continuity of h+(z) for z ≥ 0, h+(z4) is the maximum on interval [0, αj + 1]. For
αj ≤ r/2, z4 ≥ αj, hence, z

∗

+ = z4 is the maximiser of h+(z) on interval [αj , αj + 1] for
αj ≤ r/2. Further, z∗+ = αj for αj > r/2 since then z4 < αj .

By h−(αj) = h+(αj) and, for αj > 0, h′

−
(αj) = h′

+(αj) = αr−1
j (r − 2αj)/2, expected utility

EUi(αi) is maximised (i) by z1 for αj > r/2, (ii) by z1 and z4 for αj = r/2 (implying z1 = z4),
and (iii) by z4 for 0 < αj < r/2. The comparison of h−(z

∗

−
= 0) = 0 and h+(z

∗

+ = z4) > 0
implies that EUi(αi) is maximised by z4 for αj = 0. The best-response function α∗

i (αj) as
given by (6) follows immediately.
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B List of independent observations
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session and matching group group ω b second-price participants
A1 -25 -125 0 8
A2 -25 -125 0 8
B1 -25 -125 0 8
B2 -25 -125 0 8
C1 0 -100 0 8
C2 0 -100 0 6
D1 0 -100 0 6
D2 0 -100 0 6
E1 0 -100 0 8
E2 0 -100 0 6
F1 0 0 0 8
F2 0 0 0 8
G1 0 0 0 8
G2 0 0 0 8
H1 25 -75 0 8
H2 25 -75 0 8
I1 25 -75 0 10
J1 50 -50 0 8
J2 50 -50 0 6
K1 50 -50 0 8
K2 50 -50 0 8
L1 50 0 0 14
M1 50 0 0 14
N1 50 0 0 8
N2 50 0 0 10
O1 50 0 0 10
O2 50 0 0 10
P1 50 0 0 10
P2 50 0 0 10
Q1 50 0 1 10
Q2 50 0 1 10
R1 50 0 1 10
R2 50 0 1 10
S1 50 0 1 10
S2 50 0 1 8

The parameter b is the smallest possible bid. In the +treatments b = 0, otherwise b = ω−100.
The highest bid that participants could enter was always ω + 100.

C Conducting the experiment and instructions

Participants were recruited by email and could register for the experiment on the internet.
At the beginning of the experiment participants drew balls from an urn to determine their
allocation to seats. Being seated participants then obtained written instructions in German.
These instructions very slightly depending on the treatment. In the following we give a
translation of the instructions.
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After answering control questions on the screen subjects entered the treatment described
in the instructions. After completing the treatment they answered a short questionnaire on
the screen and where then paid in cash. The experiment was done with the help of z-Tree
(Fischbacher (2007)).

C.1 General information

You are participating in a scientific experiment that is sponsored by the Deutsche Forschungs-
gemeinschaft (German Research Foundation). If you read the following instructions carefully
then you can—depending on your decision—gain a considerable amount of money. It is, hence,
very important that you read the instructions carefully.

The instructions that you have received are only for your private information. During the
experiment no communication is permitted. Whenever you have questions, please raise
your hand. We then answer your question at your seat. Not following this rule leads to
exclusion from the the experiment and all payments.

During the experiment we are not talking about Euro, but about ECU (Experimental Currency
Unit). Your entire income will first be determined in ECU. The total amount of ECU that you
have obtained during the experiment will be converted into Euro at the end and paid to you
in cash. The conversion rate will be shown on your screen at the beginning of the experiment.

C.2 Information regarding the experiment

Today you are participating in an experiment on auctions. The experiment is divided into
separate rounds. We will conduct 12 rounds. In the following we explain what happens in
each round.

In each round you bid for an object that is being auctioned. Together with you another
participant is also bidding for the same object. Hence, in each round, there are two bidders.
In each round you will be allocated randomly to another participant for the auction. Your
co-bidder in the auction changes in every round. The bidder with the highest bid has obtained
the object. If bids are the same the object will be allocated randomly.

For the auctioned object you have a valuation in ECU. This valuation lies between x and
x + 50 ECU7 and is determined randomly in each round. The range from x to x + 50 will
be shown to you at the beginning of the experiment on the screen and is the same in each
round.8 From this range you will obtain in each round new and random valuations
for the object. The other bidder in the auction also has a valuation for the object. The

7In the 0+ and 50+ treatments the valuation would be announced precisely: “This valuation lies between
0 and 50 ECU” in the 0+ treatment and “This valuation lies between 50 and 100 ECU” in the 50+ treatment.
Whenever x is mentioned in the remainder of the instruction the same comment applies: In the 0+ and 50+
treatments the valuation is always announced precisely.

8This sentence was not shown in the 0+ and 50+ treatments, though in all treatments the range was shown
on the screen.
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valuation that the other bidder attributes to the object is determined by the same rules as
your valuation and changes in each round, too. All possible valuations of the other bidder are
also in the interval from x to x+50 from which also your valuations are drawn. All valuations
between x and x+50 are equally probable. Your valuations and those of the other player are
determined independently. You will be told your valuation in each round. You will not know
the valuation of the other bidder.

C.2.1 Experimental procedure

The experimental procedure is the same in each round and will be described in the following.
Each round in the experiment has two stages.

1. Stage

In the first stage of the experiment you see the following screen:9

Round: 1 of 12 Remaining time [sec]: 113

You receive 0 ECU if you make the smallest bid in an auction
The other bidder receives 0 ECU if he makes the smallest bid in the auction

Your valuation will be a number between -25 and 25
The valuation of the other bidder will be a number between -25 and 25.
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x x+ 10 x+ 20 x+ 30 x+ 40 x+ 50

Valuation [ECU]

Bid [ECU]

Please indicate your bidding function
depending on the valuation that is still

going to be determined
For a valuation of x ECU I bid:

For a valuation of x+ 10 ECU I bid:

For a valuation of x+ 20 ECU I bid:

For a valuation of x+ 30 ECU I bid:

For a valuation of x+ 40 ECU I bid:

For a valuation of x+ 50 ECU I bid:

Draw bids

Finish input stage

At that stage you do not know your own valuation for the object in this round. On
the right side of the screen you are asked to enter a bid for six hypothetical valuations
that you might have for the object. These six hypothetical valuations are x, x + 10, x + 20,
x+ 30, x+ 40, and x+ 50 ECU. Your input into this table will be shown in the graph on the
left side of the screen when you click on “draw bids”. In the graph the hypothetical valuation
is shown on the horizontal axis, the bids are shown on the vertical axis. Your input in the

9In the 0+ and 50+ treatments the interval was already shown exactly in the instructions and consistently
also in the figures in the instructions. In the other treatments the interval x to x+ 50 was, as you see in the
figure, described as x to x+ 50. From the first round of the experiment on the current numbers were given.
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table is shown as six points in the diagram. Neighbouring points are connected with a
line automatically. These lines determine your bid for all valuations between the six points
for those you have made an input. For the other bidder the screen in the first stage looks the
same and there are as well bids for six hypothetical valuations. The other bidder cannot see
your input.

2. Stage

The actual auction takes place in the second stage of each round. In each round we will play
not only a single auction but five auctions. This is done as follows: Five times a random
valuation is determined that you have for the object. Similarly for the other bidder five
random valuations are determined. You see the following screen:10

Round: 1 of 12 Remaining time [sec]: 113

You receive 0 ECU if you make the smallest bid in an auction
The other bidder receives 0 ECU if he makes the smallest bid in the auction

Your valuation will be a number between -25 and 25
The valuation of the other bidder will be a number between -25 and 25.
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x x+ 10 x+ 20 x+ 30 x+ 40 x+ 50

Valuation [ECU]

Bid [ECU]

Your income from all auctions in this round is . . . ECU

Auction 1:
Your randomly determined valuation is . . . ECU.
According to your entered bidding function you make a bid of . . . ECU.
You entered the larger bid.
Your income from this auction is . . . ECU.

Auction 2:
Your randomly determined valuation is . . . ECU.
According to your entered bidding function you make a bid of . . . ECU.
You entered the larger bid.
Your income from this auction is . . . ECU.

Auction 3:
Your randomly determined valuation is . . . ECU.
According to your entered bidding function you make a bid of . . . ECU.
You entered the smaller bid. The other bidder has made a bid of . . . ECU.
Your income from this auction is . . . ECU.

Auction 4:
Your randomly determined valuation is . . . ECU.
According to your entered bidding function you make a bid of . . . ECU.
You entered the smaller bid. The other bidder has made a bid of . . . ECU.
Your income from this auction is . . . ECU.

Auction 5:
Your randomly determined valuation is . . . ECU.
According to your entered bidding function you make a bid of . . . ECU.
You entered the larger bid.
Your income from this auction is . . . ECU.

Continue with the next round

For each of your five valuations the computer determines your bid according to the graph from
stage 1. If a valuation is precisely at x, x+ 10, x+20, x+30, x+40, or x+50 the computer
takes the bid that you gave for this valuation. If a valuation is between these points your bid
is determined according to the joining line. In the same way the bids of the other bidder are
determined for his five valuations. Your bid is compared with the one of the other bidder.
The bidder with the higher bid has obtained the object.

Your income from the auction:

For each of the five auctions the following holds:

10In the instructions the following figure was shown. This figure does not show the bidding function in the
graph and the specific bids, gains and losses that would be shown during the experiment.
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• The bidder with the higher bid obtains the valuation he had for the object in this auction
added to his account minus his bid for the object.

• If the bidder with the higher bid has a negative valuation for the object, the ECU account
is reduced by this amount.11

• If the bid of bidder with the higher is a negative number, the amount is added to his
ECU account.12

• The bidder with the smaller bid obtains no income from this auction.

You total income in a round is the sum of the ECU income from those auctions in
this round where you have made the higher bid.

This ends one round of the experiment and you see in the next round again the input screen
from stage 1.

At the end of the experiment your total ECU income from all rounds will be converted into
Euro and paid to you in cash together with your Show-Up Fee of 3.00 Euro.

Please raise your hand if you have questions.

11This item is not shown in the 0+ and 50+ treatments.
Note that, in order to be able to use same instructions for all treatments we mention the possibility of

negative valuations in all, except the 0+ and 50+ treatments, even if subjects learn later that their valuation
is drawn from an interval that contains only positive numbers.

12This item not shown in the 0+ and 50+ treatments.

27


	Introduction
	The theoretical framework
	Bayesian Nash Equilibrium bids
	Equilibrium with markdown bids
	Equilibrium with rational bidders alongside markdown bidders

	Experimental setup
	Results
	Convergence of bidding behaviour
	Visual inspection of aggregate bids
	Results of statistical tests of aggregate behaviour
	Individual bids
	Categorising individual bidders

	Concluding remarks
	Derivation of the best-response function i(j) with markdown bids as given by (6)
	List of independent observations
	Conducting the experiment and instructions
	General information
	Information regarding the experiment
	Experimental procedure



