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Abstract

This paper studies how a revenue-maximizing auction seller responds to competition

outside the auction. Outside competition is modeled by buyer-sided outside options. Since

outside options for buyers increase the degree of competition from the seller’s point of view,

intuition suggests that a revenue-maximizing seller might seek to enhance the competitive-

ness of her auction offer. In contrast, it is shown that the optimal response to outside options

calls for a less competitive auction as measured by the probability of a sale. For the first-

price and second-price auction, it is shown how the optimal minimum bid varies with the

level of competition.
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1 Introduction

This paper introduces outside competition into the Symmetric Independent Private Values

Model (SIPV). Specifically competition outside the auction is assumed to be exogenous and

modeled as a buyer-sided outside option following Kirchkamp, Poen and Reiss (2009). Buyer-

sided outside options constitute mutually exclusive consumption opportunities to the object

auctioned off and there is no buyer-competition for outside options. From the seller’s point of

view, additional consumption opportunities of buyers increase the degree of competition. Un-

educated common sense suggests that a revenue-maximizing seller might seek to enhance the

competitiveness of her auction offer as a response. In contrast, it is shown that optimal auctions

with outside options are less competitive as measured by the probability of a sale although the

optimal minimum bid in the first-price and second-price auction decreases with the level of

competition as proxied by the value of outside options to buyers.

The plan of this note is as follows: section 2 reviews the SIPV model with public outside

options under the assumption of risk neutrality. Section 3 characterizes optimal auctions and

discusses the result. Section 4 considers the behavior of optimal minimum bids in the first-price

and second-price auction. Section 5 briefly comments on allocative efficiency.

2 The SIPV model with public outside options

In this section, the standard SIPV auction model with public outside options that are buyer-

sided is reviewed.1 First, the standard framework is reviewed. Then, public outside options

are discussed. Subsequently, equivalence results are provided serving as the foundation to the

characterization of seller-optimal auction designs.

2.1 The standard model

Consider the canonical auction model with independent private values where a single seller al-

locates an indivisible object to a group of N > 1 risk-neutral potential buyers employing some

auction design of her choice.2 The seller’s reservation value for the object is vo ∈ R. Buyer i

(i = 1, ..., N) values the object at vi ∈ [v−, v+] which is his private information, [v−, v+] ⊂ R.

Bidders’ valuations are independently and identically distributed according to the cumulative

distribution function F(vi) which is continuously differentiable and strictly monotonic increas-

ing on its domain [v−, v+].

1See Kirchkamp, Poen and Reiss (2009) for a more detailed discussion.
2The model as outlined was introduced in Riley and Samuelson (1981).
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The seller is restricted to choose an auction design that conforms to the following assump-

tions A1-A4:

A1 The seller always accepts bidder i’s bid bi ∈ R unless it is smaller than the minimum bid

bM ∈ R.

A2 The auction winner is always a bidder with the highest bid.

A3 The auction design only discriminates between bidders on the basis of submitted bids.

A4 There exists a symmetric Bayesian equilibrium characterized by a strictly monotonic in-

creasing bidding function β : [v−, v+] → R and a participation rule ε : [v−, v+] → {bid

submission, no bid submission} where v˜ is the lowest valuation of a bidder that voluntarily

participates in the auction such that ε(vi) = no bid submission if vi < v˜ and ε(vi) = bid

submission if vi ≥ v˜. If each valuation type v ∈ [v−, v+] voluntarily participates in the

auction, then v˜ = v−, otherwise v˜ denotes the valuation of a bidder who is indifferent

between bid submission and nonparticipating in the auction.

Assumptions A1-A3 ensure that the auction design exhibits bidder anonymity and excludes

bidder-specific side payments unless these are formed on the basis of bids only. Assumption

A2 allows for any tie-breaking rule; its particular specification is meaningless since, due to A4,

coincidence of bids requires coincidence of continuously distributed valuations which occurs

with probability zero.

Definition 1 Auction design D belongs to the class of auctions A if it conforms to assumptions A1-A4.

The model as outlined and the particular auction design is common knowledge.

2.2 Public outside options

The novel feature of the studied auction model is the introduction of buyer-sided consump-

tion opportunities. In addition to the consumption opportunity associated with winning the

auctioned object, here, each of the N buyers has the opportunity to substitute the auctioned

object by some certain alternative. Without loss of generality, only the best alternative is con-

sidered if there is more than one. A potential bidder can execute his outside option instead of

participating in the auction or subsequently to his auction participation if he did not win the

object.3

In particular, if bidder i executes his outside option, he receives the certain payoff u(wi)

where wi ∈ [w−, w+] ⊂ R. To ensure existence of valuation types that have an incentive to

3This feature distinguishes the studied type of outside options from that in the common value model in Cox,

Dinkin and Swarthouth (2001) where mere auction participation forfeits the outside option’s value.
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participate in a standard auction4, it is assumed that the largest valuation v+ always exceeds

the value of the outside option wi:

v+ > wi. (1)

Otherwise, even at a zero-cost, buyers prefer their outside options to the auctioned object and

the considered auction problem is trivial and meaningless.

In order to formalize that the auctioned object and the outside option constitute mutually

exclusive alternatives, suppose in the extreme that receiving the auction object fully forfeits the

value of the outside option. Thus, single-object demand is assumed. Moreover, suppose that

outside options are symmetric and public in the sense that all outside option values coincide

for all bidders which is common knowledge:

ωi =







wi, i without auctioned object

0, i with auctioned object

where: wi = wj = w, (∀i, j = 1, ..., N).

In a symmetric Bayesian equilibrium characterized by a strictly monotonic increasing bid-

ding schedule, the ”lowest” valuation type participating in the auction never wins it and al-

ways realizes his outside option. Thus, the lowest valuation type that voluntarily participates

in the auction requires in the auction:

U(β(v˜), v˜) = u(w). (2)

In case there is no outside option, w = 0 and U(β(v˜), v˜) = u(0) imply the canonical SIPV

model as a special case.

2.3 Equivalence theorems

This subsection provides equivalence theorems under risk-neutrality that allow for public out-

side options. For completeness, the theorems are explicitly derived using the well-known

standard procedure. Firstly, it is shown that expected payments of buyers are independent

of the particular auction design as long as the pool of participating valuation types remains un-

changed. Secondly, it is shown that bidders’ expected payment equivalence implies expected

payoff equivalence for buyers and sellers.5 All equivalence theorems in the absence of outside

options were independently developed in Riley and Samuelson (1981) and Myerson (1981).6

4Without entry fees and strictly positive minimum bids etc.
5Seller’s payoff equivalence is also known as revenue equivalence.
6Surveys are provided in Klemperer (1999), McAfee and McMillan (1987), Milgrom (1989, 2004) and Wolfstetter

(1996).

4



The introduction of public outside options does not essentially alter the equivalence results

and leads to the intuitive insight that expected equilibrium payments of buyers decrease with

the outside option’s value. It follows that more valuable outside options lead to a larger payoff

to a potential buyer and to a smaller revenue for the seller. In this sense, outside options lead

to a transfer of rents from the seller to the group of buyers. The presentation of results follows

Riley and Samuelson (1981) and Wolfstetter (1996) that ignore outside options.

2.3.1 Expected payment equivalence

Risk-neutrality implies a positive affine Bernoulli utility function that is employed in its nor-

malized form u(x) = x. Here, the property that risk neutrality allows additive separation of

expected benefits and expected costs is important. If the actual payment rule under any auc-

tion design of class A is denoted by z(b1, b2, ..., bN), the expected payment of any bidder i

submitting bid bi can be written as7

U(bi, vi) = Pr {bi = max {β(V1), ..., bi, ..., β(VN)} } · vi − E [z(β(V1), ..., bi, ..., β(VN))]

+ [1 − Pr {bi = max {β(V1), ..., bi, ..., β(VN)} }] · w,

where the unknown valuation of any bidder j 6= i is given by Vj and all other bidders are sup-

posed to follow the assumed equilibrium bidding strategy β(·). Simple algebraic manipulation

of the preceding definition leads to

U(bi, vi) = Pr {bi = max {β(V1), ..., bi, ..., β(VN)} } · (vi − w)
︸ ︷︷ ︸

net valuation

(3)

− E [z(β(V1), ..., bi, ..., β(VN))] + w.

where the net valuation is defined as the difference of a bidder’s valuation for the auctioned

object and the value of his outside option. The last constant signals that the bidder can be sure

to receive his outside option. The first term shows that, in case the bidder wins the auction,

he receives his net valuation: he does receive his valuation for the auctioned object but has to

”repay” the value of his outside option at the same time.

A central result in this model is the broad independence of (valuation-dependent) expected

buyer payments of any particular auction design. This result is known as payment equivalence

and stated as theorem ??. It holds for all auction designs of class A that leave the participating

valuation pool unchanged. It is obvious that independence of expected payments can not hold

if the valuation pool changes with the auction design. Suppose it did, then, there must be some

valuation type that makes nonzero payments under one design but zero payments under some

7To obtain bidder i’s winning probability, notice that the assumed equilibrium bidding function β(·) is symmetric

and strictly monotonic increasing.
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other design directly contradicting design-independence of expected payments for this type.

Moreover, it will be shown that a revenue-maximizing seller restricts the participating valu-

ation pool which only increases revenue if some (participating) valuation types make larger

expected payments with valuation type restriction than without since the increased expected

revenue is generated by a smaller pool of valuation types.

Theorem 1 (payment equivalence) For any auction design in class A and in a symmetric Bayesian

equilibrium, the expected equilibrium payment to the seller Z∗(vi) ≡ E[z(β(V1), ...,β(vi),..., β(VN))]

by bidder i with vi ≥ v˜ is:

Z∗(vi) = vi F(vi)
N−1 −

∫ vi

v˜

F(x)N−1 dx − w F(vi)
N−1. (4)

Proof. [Sketch]

The objective function (??) implies:

dU(bi, vi)

dvi
=

∂U(bi, vi)

∂bi
·

∂bi

∂vi
+

∂U(bi, vi)

∂vi
.

Optimal bidding, b∗i (vi), requires ∂U(b∗i (vi), vi)/∂bi = 0 and thus:

dU(b∗i , vi)

dvi
=

∂U(b∗i , vi)

∂vi
.

Substitution of the partial derivative ∂U/∂vi and using definition U∗(vi) ≡ U(b∗i (vi), vi) leads

to:
dU∗(vi)

dvi
= Pr {b∗i = max {β(V1), ..., b∗i , ..., β(VN)} } .

Since the equilibrium is symmetric by assumption and due to its Nash-property, there must be

no incentive for bidder i to deviate from the equilibrium strategy implying b∗i (vi) = β(vi) and

thus:
dU∗(vi)

dvi
= Pr {β(vi) = max {β(V1), ..., β(vi), ..., β(VN)} } .

Since the equilibrium bidding function is strictly monotonic increasing, the winning probability

is given by:

Pr {β(vi) = max {β(V1), ..., β(vi), ..., β(VN)} }

= Pr {vi = max {V1, ..., vi, ..., VN} }

= F(vi)
N−1,

where the last line follows from the assumption of independent and identical distributions of

other bidders’ valuations. It follows that

dU∗(vi)

dvi
= F(vi)

N−1.
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Integrating over [v˜, vi] leads to

U∗(vi) = U∗(v˜) +
∫ vi

v˜

F(x)N−1 dx. (5)

Due to the objective function’s definition (??), in equilibrium:

U∗( vi) = F(vi)
N−1 · (vi − w)− E [z(β(V1), ..., β(vi), ..., β(VN))] + w. (6)

Equating both expressions for expected utility of bidder i in equilibrium, (??) and (??), and

solving for E[z(·)] leads to:

E [z(β(V1), ..., β(vi), ..., β(VN))] = F(vi)
N−1 · (vi − w) −

∫ vi

v˜

F(x)N−1 dx − U∗(v˜) + w.

Public outside options imply that valuation type v˜ precisely receives from participating in the

auction the expected utility that he obtains from seizing his outside option, therefore:

U∗(v˜) = w.

It follows that the expected equilibrium payment of bidder i is:

E [z(β(V1), ..., β(vi), ..., β(VN))] = F(vi)
N−1 · (vi − w)−

∫ vi

v˜

F(x)N−1 dx.

�

Example 1 (UD) Valuations of any potential buyer are uniformly distributed over [v−, v+] such that

the cumulative distribution function is given by:

F(vi) =







vi−v−
v+−v−

, if vi ∈ [v−, v+]

0, otherwise
.

The resulting expected equilibrium payment of a potential buyer with valuation vi to the auctioneer is:

Z∗(vi) =







N (vi−w) (vi−v−)N−1−(vi−v−)N+(v˜−v−)N

N (v+−v−)N−1 , if vi ∈ [v˜, v+]

0, otherwise
.

Example 2 (ED) Valuations of two potential buyers are exponentially distributed over [0, ∞) depend-

ing on parameter λ > 0 (E[Vi] = 1/λ) such that the cumulative distribution function is given by:

F(vi) =







1 − e−λvi , if vi ∈ [0, ∞)

0, otherwise
.

The resulting expected equilibrium payment of a potential buyer with valuation vi to the auctioneer is:

Z∗(vi) =







v˜ + e−λv˜

λ −
(
vi − w + 1

λ

)
e−λvi − w, if vi ∈ [v˜, ∞)

0, otherwise
.
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2.3.2 Effect of outside options on expected payments

The explicit introduction of public outside options into the SIPV model shows that the out-

side option value w determines the expected equilibrium payment Z∗(vi) of a potential buyer.

Corollary ?? summarizes that the seller receives lower expected payments for more valuable

outside options. If a change in w does not affect the marginal bidder, then the expected payment

decreases by w F(vi)
N−1 as compared to the standard case without outside options (w = 0).

This payment reduction matches the expected opportunity costs of participating in the auction

created by outside options: Bidder i with vi has the largest valuation among N buyers and wins

the auction with probability F(vi)
N−1 (β′

> 0). With this winning probability, he forfeits his

outside option valued at w at the same time, for which equilibrium behavior exactly compen-

sates him.

Corollary 1 More valuable public outside options reduce the expected equilibrium payment of any bid-

der vi > v˜ unless the response of the marginal bidder v˜ fully compensates this in cases with restricted

valuation pool, i.e. v˜ > v−.

Proof. Differentiating Z∗(vi) leads to

∂Z∗(vi)

∂w
= −F(vi)

N−1 +
∂v˜

∂w
F(v˜)

N−1.

By definition F(v−) = 0 and the second term of the derivative vanishes for v˜ = v−. It follows

that the expected equilibrium payment of any bidder vi > v− decreases in w. For v˜ > v−, the

response of the marginal bidder to variations of w, ∂v˜/∂w, influences the sign of ∂Z∗/∂w, too.

Since F is strictly monotonic increasing, for vi > v˜ one always obtains F(vi)
N−1

> F(v˜)N−1,

thus, ∂v˜/∂w ≤1 is sufficient for a negative response of ∂Z∗/∂w.

�

For standard auction designs such as the first-price or the second-price auction where the

marginal bidder is implemented by a minimum bid, the marginal bidder corresponds to the

sum bM + w implying ∂v˜/∂w = 1 and, thus, for these designs ∂Z∗/∂w < 0.

2.3.3 Equivalence of expected payoffs

A consequence of the fundamental payment equivalence theorem is its straightforward exten-

sion to expected equilibrium payoffs: Since the expected payments of bidders coincide for all

designs belonging to class A under invariance of the valuation pool, its sum, which is expected

revenue, must remain unchanged. Due to the fact that the probability of winning solely de-

pends on realized valuations that remain constant as the design changes, it is obvious that the
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expected payoff to any valuation type under any design of class A must coincide. The follow-

ing theorem ?? formalizes these considerations. From a bidder’s perspective, the introduction

of public outside options leads equilibrium behavior to imply an increase in his value function

by w although the Bernoulli utility function does not increase by w. This demonstrates that the

existence of outside options leaves a (nonoptimizing) seller worse off since equilibrium bidding

behavior ensures that each bidder receives at least his outside option value. If a bidder does

not win the auction, he receives his outside option without imposing any cost on the seller.

However, winning the auction forfeits the winner’s outside option and his virtual execution of

the outside option, guaranteed by bidding behavior, requires the seller to provide the outside

options value through a lower payment for the auctioned object. Due to that, expected revenue

drops by the value of the public outside option given that at least one bidder participates in the

auction occurring with probability 1 − F(v˜)N .

Theorem 2 (payoff equivalence) For any auction design in class A and in a symmetric Bayesian

equilibrium,

(a) (revenue equivalence) the expected revenue R∗(v˜) of the seller is given by

R∗(v˜) = N
∫ v+

v˜

F(vi)
N−1 f (vi)

[

vi −
1 − F(vi)

f (vi)

]

dvi − w
[

1 − F(v˜)
N
]

, (7)

(b) (payoff equivalence/buyer) and the expected payoff of buyer i (i=1, ..., N) is

U∗(vi) =







∫ vi

v˜
F(x)N−1 dx + w, if vi ≥ v˜

w, if vi < v˜

. (8)

Proof. (a) Each bidder with valuation vi ≥ v˜ expects to pay Z∗(vi) to the seller in sym-

metric Bayesian equilibrium (theorem ??). The seller receives no expected payment from any

potential bidder with valuations smaller than the indifference threshold v˜. Since the seller is

not informed about valuation realizations, she expects to receive the same payment from each

of the N potential bidders:

R∗(v˜) = N · [Pr {vi ≥ v˜} · E[Z∗(vi)|vi ≥ v˜] + Pr {vi < v˜} · 0]

= N
∫ v+

v˜

f (vi) Z∗(vi) dvi

= N
∫ v+

v˜

f (vi) vi F(vi)
N−1dvi − N

∫ v+

v˜

f (vi)
∫ vi

v˜

F(x)N−1dx dvi

︸ ︷︷ ︸

=: A

− N
∫ v+

v˜

f (vi) w F(vi)
N−1dvi

︸ ︷︷ ︸

=: B
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Integrating by parts expression A leads to8

A =
∫ v+

v˜

F(vi)
N−1dvi −

∫ v+

v˜

F(vi)
Ndvi. (9)

Since w is constant and f (vi) is the derivative of F(vi) with property F(v+) = 1, the solution of

B is given by

B =
w

N

[

1 − F(v˜)
N
]

. (10)

Using (??) and (??) leads to the expression for expected revenue

R∗(v˜) = N
∫ v+

v˜

f (vi) vi F(vi)
N−1dvi − N

∫ v+

v˜

F(vi)
N−1dvi + N

∫ v+

v˜

F(vi)
Ndvi −w

[

1 − F(v˜)
N
]

.

Grouping integrals leads to the expression in part (a) of the theorem.

(b) Each bidder with valuation vi < v˜ does not participate in the auction and executes his

outside option. Thus, his expected utility is U∗(vi|vi < v˜) = w. The expected utility of a bidder

with valuation vi ≥ v˜ is given by (??) depending on U∗(v˜). Using condition U∗(v˜) = w leads

to (b).

�

Example 3 (UD) Valuations of buyers are uniformly distributed over [v−, v+]: F(vi) = vi−v−
v+−v−

. Theo-

rem ?? implies

R∗(v˜) =
(N − 1)v+ + 2v−

N + 1
+

(v˜ − v−)N [(N + 1) (v+ + w)− 2(Nv˜ + v−)]

(v+ − v−)N (N + 1)
− w

and

U∗(vi) =







(vi−v−)N−(v˜−v−)N

N (v+−v−)N−1 + w, if vi ∈ [v˜, v+]

w, otherwise.
.

3 Optimal auctions and the decision to offer the auction

In this section, auction designs are identified that maximize the expected payoff to a risk-

neutral seller. The presented characterization of optimal auction designs follows the approach

of Riley and Samuelson (1981) employing the revenue equivalence theorem. Here, the key re-

sult is that the revenue maximizing seller reduces the competitiveness of her auction offer in

the sense that the allocation probability decreases as the value of outside options increases.

The revenue equivalence theorem ?? implies that the only way a seller can affect her ex-

pected equilibrium revenue is through adjustments of the marginal bidder. Thus, indepen-

dently of the specific value of the outside option, a change of the auction design that leaves the

8The separation of the original integral into u′(vi) := f (vi) and v′(vi) :=
∫ vi

v˜
F(x)N−1dx implies

u(vi) = F(vi) and application of the Leibniz rule leads to v′(vi) = F(vi)
N−1. Thus,

∫ v+

v˜
u′(vi) v(vi) dvi =

[

F(vi)
∫ vi

v˜
F(x)N−1dx

]v+

v˜

−
∫ v+

v˜
F(vi)

N dvi . Using F(v+) = 1 and
∫ v˜

v˜
F(x)N−1dx = 0, the solution of A is obtained.
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participating valuation pool unaffected, e.g. a second-price auction with the same minimum

bid and entry fee instead of a first-price auction, does not affect expected revenue in equilib-

rium. This property significantly eases the characterization of revenue-maximizing auction

designs since all that is required for characterization is the optimal selection of the marginal

bidder.

In case it is suboptimal for a potential seller to offer an auction, the optimal auction de-

sign restricts the participating valuation pool such that the allocation probability is equal to

zero. Therefore, optimal auction designs simultaneously solve the seller’s decision to offer the

auction.

Generality is the main advantage of the identification of optimal auctions through optimal

marginal bidder selection using revenue equivalence. Instead of finding the optimal marginal

bidder for each auction design which requires knowledge of every specific rule of the consid-

ered design, it suffices that the design conforms to some basic assumptions (A1-A4) such that

there is auction class-wide optimization: Each auction design in class A is optimal unless it im-

plies a marginal bidder that is suboptimal. Unfortunately, a revenue maximizing seller cannot

directly implement this characterization since the complete set of rules of an auction design

implies the particular marginal bidder, thus, the marginal bidder is no control variable of the

seller. To address this shortcoming, section 4 demonstrates how the marginal bidder can be

implemented by a minimum bid in the first-price and second-price auction.

In order to ease the exposition, it is assumed that the distribution exhibits the Monotone

Hazard Rate Property given below:9

(Monotone Hazard Rate Property) A cumulative distribution function F(v) exhibits the mono-

tone hazard rate property if it satisfies

d
(

f (v)
1−F(v)

)

dv
≥ 0.

Originally, the conditional probability density f (t)/[1 − F(t)] is known as the Hazard Rate

or Failure Rate that approximates the probability that some component that smoothly works

until time t breaks down by the ”next” point in time (in [t, t + dt]). Within this context, the

assumption of a declining failure rate over time seems quite intuitive. Although its extension

to the auction context is not straightforward in terms of interpretation, the decisive advantage

of the property is to provide additional structure of the distribution of valuations which allows

an elegant identification of optimal auction designs. If the cumulative distribution function

is strictly increasing, a nondecreasing density function is sufficient for the monotone hazard

9The given definition stems from Fudenberg and Tirole (1991, p. 267).
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property due to the strictly decreasing denominator. Thus, the uniform distribution, widely

used in auction theoretical and experimental applications, exhibits this property.10

3.1 Characterization of optimal auctions with public outside options

Theorem ?? characterizes optimal auction designs through the optimal selection of the marginal

bidder. It can be interpreted as the optimal choice of the allocation probability. In symmetric

equilibrium, the probability of allocation is equal to the probability that at least one realized

valuation among those of N buyers is not smaller than the marginal bidder, i.e. 1 − F(v˜)N .

Due to the fact that the cumulative distribution function is strictly increasing, f (v) > 0, any

feasible marginal bidder v˜ ∈ [v−, v+] precisely corresponds to one allocation probability and

vice versa. If a seller selects a design that implies marginal bidder v˜ = v+, then the probability

of allocation equals zero since not even a buyer with the largest valuation prefers to participate

in the auction. In contrast, a design implying v˜ = v− attracts any valuation type and the

allocation probability is equal to one.

Theorem ?? indicates that more valuable public outside options have the same effect on the

optimal marginal bidder as a variation of the seller’s reservation value vo by the same amount.

If there is no possibility that the net valuation of any buyer exceeds the seller’s reservation

value, vo ≥ v+ − w, she always sets a prohibitively high marginal bidder v∗˜ = v+ that is

essentially equivalent to not offering the auction since, in this case, the allocation probability

equals zero. Intuitively, a larger outside option value implies a larger cost for the seller since she

has to compensate the auction winner for giving up his outside option. In order to avoid that

larger cost, the seller intends to decrease the probability that she has to pay the compensation

to an auction winner and, as a consequence, she increases the marginal bidder decreasing the

allocation probability.

Theorem 3 For any regular distribution function exhibiting the monotone ratio property, any auc-

tion design in class A that implies the optimal marginal bidder v∗˜ maximizes the expected revenue in

equilibrium where v∗˜ is uniquely determined by:

vo + w +
1 − F(v∗˜ )

f (v∗˜ )
− v∗˜ = 0, if v− − 1/ f (v−) < vo + w < v+, (11)

where v∗˜ ∈ (v−, v+) in the preceding case, or

v∗˜ =







v−, if vo + w ≤ v− − 1/ f (v−)

v+, if vo + w ≥ v+

.

10The exponential distribution exhibits the monotone hazard rate property, too, although its density function is

strictly decreasing in valuations.
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Proof. If the seller offers an auction, then she receives the expected equilibrium revenue

R∗(v˜). The probability that no buyer has a valuation exceeding that of the marginal bidder is

F(v˜)N . Then, the auctioned object is not allocated to a buyer but to the seller receiving her

reservation value vo. Thus, the seller’s expected utility in equilibrium is given by Uo(·):

Uo(v˜) = R∗(v˜) + vo F(v˜)
N .

Substitution of R∗(v˜) by (??) and subsequent differentiation leads to

U′
o(v˜) = N F(v˜)

N−1 f (v˜)

[

vo + w +
1 − F(v˜)

f (v˜)
− v˜

]

︸ ︷︷ ︸

=:g(v˜)

.

Obviously, the distribution’s properties imply for the defined function g(v˜)

g(v−) = vo + w + 1/ f (v−) − v− and

g(v+) = vo + w − v+

and the Monotone Hazard Rate Property implies 11

g′(v˜) < 0.

Since any v˜ > v− implies F(v˜)N−1
> 0, it follows that the coefficient of g(v˜) in U′(v˜) is strictly

positive due to N > 0 and f (·) > 0, thus, the sign of g(v˜) determines the sign of derivative

U′
o(v˜) for v˜ > v−. The derivative U′

o(·) vanishes at v˜ = v−. Depending on the particular

parameter configuration, there are three different cases: (I) The configuration vo + w ≤ v− −

1/ f (v−) implies g(v−) ≤ 0. Since g(·) is maximized at v˜ = v− due to g′ < 0, g(·) is always

strictly negative for any v˜ > v−. It follows that U′
o(v˜) < 0 for any v˜ > v− and, thus, v∗˜ = v−

maximizes the seller’s revenue. (II) The configuration vo + w ≥ v+ implies g(v+) ≥ 0. Since

g(·) is minimized at v˜ = v+ due to g′ < 0, it follows that g(·) is strictly positive for any v˜ < v+

and nonnegative at v˜ = v+. Thus, U′
o(v˜) > 0 for any v˜ ∈ (v−, v+) and v∗˜ = v+ maximizes

seller’s payoff. (III) Any other configuration not coverd by cases I and II implies g(v−) >

0 > g(v+). From the intermediate value theorem follows the existence of a unique solution of

g(v∗˜ ) = 0 with v∗˜ ∈ (v−, v+) due to g′ < 0 as implicitly defined by expression (??). The solution

v∗˜ is a global maximizer since U′
o(v˜) > 0 if v˜ ∈ (v−, v∗˜ ) and U′

o(v˜) < 0 if v˜ ∈ (v∗˜ , v+) follows

from the behavior of g(·); notice that there is another stationary point of the objective function

Uo(·) at v−, since its derivative vanishes there independently of g(·). However, this must be a

minimum for the considered case III and also for case II due to U′
o(v˜) > 0 for v˜ ∈ (v−, v∗˜ ).

�

11The term [1 − F(v˜)] / f (v˜) is the inverse of the Hazard Rate and thus decreasing. Since vo and w are arbitrary

constants and the argument negatively enters the sum, g(v˜) is strictly monotonic decreasing.
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Example 4 (UD) Valuations of buyers are uniformly distributed over [v−, v+]: F(vi) = vi−v−
v+−v−

. Ac-

cording to theorem ??:

v∗˜ =
vo + w + v+

2
, if

vo + w + v+

2
∈ (v−, v+)

or

v∗˜ =







v−, if vo + w + v+ ≤ 2v−

v+, if vo + w + v+ ≥ 2v+

.

3.2 Optimal auctions and naive competition

The intensity of competition is identified by the value of the public outside option. To see the

reasonability of this link, consider the seller’s perspective. From his point of view, alternative

opportunities to receive some substitute for her object offered in the auction represent compet-

ing offers due to buyers’ single-object demand. Clearly, execution of any of these alternative

transaction opportunities creates some return to the executor. Here, this value of execution is

given by w and is the same for all buyers. It can be thought of as some equilibrium payoff

generated by some other (not modeled) auction or bargaining game, too. Competition is naive

since the value from executing some alternative transaction opportunity is exogenous and, in

particular, does not interact with the behavior of the auction seller.

Uneducated common sense suggests that a revenue-maximizing seller might respond to

fiercer competition with a more competitive auction. In the wake of competition, she could set

a lower minimum bid or require a smaller entry cost than in the absence of competition such

that a larger pool of buyers is attracted to the auction. However, rigorous analysis shows that

the optimizing seller responds with a less competitive auction in the sense that she chooses a

smaller allocation probability than without outside options. Proposition ?? provides the formal

result.

Proposition 1 For an interior solution determined by g(v∗˜ ) = 0, the marginal bidder increases with

the value of the public outside option unless the probability of allocation is zero, i.e. v∗˜ = v+:

dv∗˜
dw

=







1

1−d
(

1−F(v˜)
f (v˜ )

)

/dv˜

∣
∣
∣
∣
∣
v˜=v∗˜

> 0, if v− − 1/ f (v−) ≤ vo + w < v+

0, otherwise

.

Proof. Application of the implicit function theorem to (??) leads to the given derivative. Its

sign is an implication of the monotone hazard rate property.

�
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Example 5 (UD) Valuations of buyers are uniformly distributed over [v−, v+]: F(vi) = vi−v−
v+−v−

. Propo-

sition ?? simplifies to
dv∗˜
dw

=
1

2
.

Corollary 2 Any restriction of the pool of valuation types that participates in the auction reduces the

probability of allocation.

Proof. The (external) allocation probability12 gives the probability that at least one real-

ization among N drawn valuations exceeds that of the marginal bidder such that at least one

bidder participates in the auction. Since F(·) is strictly monotonic increasing, the allocation

probability 1 − F(v˜)N is strictly monotonic decreasing with the marginal bidder. Any addi-

tional restriction of the valuation pool that participates in the auction corresponds to a larger

marginal bidder v˜.

�

4 Implementation of the optimal allocation probability

In the first-price and second-price auction, the marginal bidder is (in equilibrium) given by13

v˜ = max{bM + w, v−}

Thus, the implementation of the optimal marginal bidder and the optimal allocation probability

by a minimum bid is straightforward, in particular:

bM







≤ v− − w, if v˜ = v−

= v˜ − w, if v˜ ∈ (v−, v+)

≥ v+ − w, if v˜ = v+

. (12)

In the absence of outside options, the minimum bid precisely equals the marginal bidder. Con-

sideration of outside option reduces the minimum bid by the value of the outside option. If a

revenue-maximizing seller implements some participating valuation pool while ignoring the

existence of valuable outside options, then she sets a minimum bid that is too large in the sense

that it restricts a larger valuation pool from participating in the auction than she had intended

to.

Interestingly, any increase of the public outside option value in the first-price or second-

price auction leads to a lower competitiveness of the auction although a revenue-maximizing

seller decreases the minimum bid. To see this, suppose v∗˜ ∈ (v−, v+). The derivative dbM/dw

12The residual probability gives the probability that the object remains with the seller.
13See Reiß (2005).
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is comprises the optimal response of the seller to the increase in value w and the adjusted

behavior of buyers. If the outside option value increases, a larger valuation pool prefers to

not participate in the auction. This is reflected by an increasing marginal bidder. If the seller

intends to implement the original marginal bidder, then she has to decrease the minimum bid

by the same amount by which the value of the outside option has grown, see (??). However,

this total decrease is suboptimal for the seller since

dbM

dw

∣
∣
∣
∣
v˜=v∗˜

=
dv∗˜
dw

− 1

and equivalently (proposition ??)

dbM

dw

∣
∣
∣
∣
v˜=v∗˜

=
1

1 − d
(

1−F(v˜)
f (v˜ )

)

/dv˜

∣
∣
∣
∣
∣
∣
v˜=v∗˜

− 1 ∈ (−1, 0].

Due to the monotone hazard rate property, the numerator can not be smaller than one. It fol-

lows that the optimal minimum bid decreases as the outside option value increases. However,

the optimal minimum bid does not fall sufficiently to restore the valuation pool that originally

preferred to participate in the auction (this requires db∗M/dw = −1) and, thus, the allocation

probability and the competitiveness of the auction decreases. The following example illus-

trates.

Example 6 Valuations of buyers are uniformly distributed over [v−, v+]: F(vi) = vi−v−
v+−v−

. From above,

dv∗˜ /dw = 0.5 and db∗M/dw = 0.5 − 1 = −0.5. Now, the same finding is illustrated by comparison of

two scenarios that differ in the value of outside options:

(I) Canonical case: w = 0 and Vi ∼ U[0, 1], vo = 0. Thus v∗˜ = 0.5. The marginal bidder is imple-

mented with minimum bid bM = 0.5. With two buyers, the probability of allocation is 0.75.

(II) Competition: w = 0.2 and Vi ∼ U[0, 1], vo = 0. Then, v∗˜ = 0.6. The marginal bidder is imple-

mented with the minimum bid bM = 0.4. Here, the allocation probability with two buyers is 0.64.

5 Allocative Efficiency

In the canonical model, there is no outside option, w = 0, and usually vo = v−.14 Thus, in

the canonical parameter framework, any potential buyer has a valuation which exceeds that

of the seller. It follows that every allocation that does not lead to a sale is Pareto-inefficient.

According to theorem ??, the canonical parameter framework implies that the optimal marginal

bidder v∗˜ strictly exceeds the smallest feasible valuation v− implying that the probability that

the object is not allocated to some buyer is strictly positive. Thus, optimal auction designs in

14Cases with vo < v− can be ruled out by an opportunity cost argument: the seller anticipates that she could

simply set the posted price v− and receive this revenue with certainty.
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the canonical case always lead to inefficient allocations with positive probability. In contrast,

consideration of outside options, and, also, separation of assumptions about the reservation

value of the seller from assumptions about the valuation pool of buyers, demonstrates that

optimal auction designs do not necessarily imply Pareto-inefficient allocations. There is always

allocative efficiency, even with optimal auctions, if the inequality vo + w ≤ v− − 1/ f (v−) is

satisfied and an optimizing seller does not restrict the valuation pool that participates in the

auction, i.e. v∗˜ = v−. Less valuable outside options and smaller reservation values of the seller

favor nonviolation of the inequality. In the extreme, the seller might have a cost of disposal

for the object that she seeks to auction off leading to a negative reservation value. On the

other hand, buyer-sided extremes are plausible, too. Potential buyers might be badly in need

of either the auctioned object or some alternative object which may be a rather unsatisfying

alternative such that the ”natural” lower boundary w ≥ 0 for outside option values may not

need to hold and negative outside options result.15 Optimal auctions are trivially efficient if the

seller’s reservation value exceeds the largest net valuation vo > v+ − w such that the seller sets

the allocation probability equal to zero. This is efficient since the largest valuation type never

pays more than the amount v+ − w for the auctioned object while the the seller has a larger

reservation value.

15By definition, any buyer values his best outside option at w. For most applications, it appears reasonable to

assume w ≥ 0 since the status quo of the buyer remains intact if he neither wins the auction nor executes the

outside options. However, sometimes the conservation of the status quo leads to an extremely negative outcome

where the assumption of some ”best” negative outside option that slightly improves on the status quo is justified.

These scenarios are equivalent to punishments of buyers that are unsuccessful in the auction.
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